
Angular
Essentials

By: Rabi Kiran, Mahesh Sabnis, Suprotim Agarwal

Published By:

Write fast, run fast with Ignite UI for Angular

 Free Trial: Click to Download Now

https://goo.gl/ECwAZY

© 2017 Infragistics
All rights reserved
www.infragistics.com

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

A Note from Infragistics

Thanks for downloading Angular Essentials. Our goal is to provide the development community
with the resources and tools that will help you build great modern web applications. This
book will be a great help to developers who wish to learn how to build client-side JavaScript
applications with Angular.

This book begins with the basics—giving you a foundation to build upon. You’ll then move
on to advanced topics, learning the features of Angular you will need to build enterprise-class
web applications.

While Angular Essentials focuses on components and services built into the Angular framework,
enterprise-class applications often require more specialized and feature-rich components. And
the best components available for these applications are in Infragistics Ignite UI Components
for JavaScript/HTML5 and ASP.NET MVC and Ignite UI for Angular. Ignite UI is a complete library
of HTML and JavaScript controls and tools that enables developers to quickly and easily
build high-performing modern web applications on every device—desktop, tablet and
phone—with the most popular modern web frameworks.

These features include:

A complete set of Grid controls, including OLAP and Tree grids

A wide range of data visualization options, including a long list of charts, geographical maps
and interactive gauges.

The fastest rendering charts and grids available, even with large data sets

Data-bound controls that can bind to local, remote or even real-time streaming data sources

Over 60 components designed to help you build and deliver your application quickly

Ignite UI for Angular has a complete set of component wrappers that enable you to use our
components in your Angular application as if they were native Angular components. You
don’t get some watered-down framework that’s missing key features your users need; Ignite
UI provides all the functionality from our product in Angular, today.

In addition to this book, we’ve prepared nine lessons (found at the back of this book) to help
you not only get a better understanding of how to work with Angular, but also how Ignite
UI can be a great addition to your developer toolbox. Follow them and learn how Ignite UI
(which you can try now for free) offers the full-featured controls you need without compromise.

Enjoy the book,

James Bender
Infragistics Product Manager, Ignite UI
JBender@infragistics.com

http://infragistics.com/ignite-ui
https://goo.gl/ECwAZY

 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Contents

Chapter 1: ECMAScript Overview��� 1

Chapter 2: TypeScript Overview���10

Chapter 3: Angular 2 New Features���20

Chapter 4: Angular 2 Application Structure���26

Chapter 5: Angular 2 Development Environment ���34

Chapter 6: Introduction to Components���48

Chapter 7: Creating a Custom Component ���55

Chapter 8: Multiple Components Communication ���66

Chapter 9: Applying Templates and Styles to Components���75

Chapter 10: Directive Overview���82

Chapter 11: Basic Custom Attribute Directive���88

Chapter 12: Advanced Custom Attribute Directives���93

Chapter 13: Structural Directives ���98

Chapter 14: Custom Structural Directives�� 102

Chapter 15: Getting Started with Databinding �� 105

Chapter 16: Angular 2 DataBinding Interpolation �� 111

Chapter 17: Angular 2 Property Binding�� 115

Chapter 18: Angular 2 Event Binding�� 120

Chapter 19: Angular 2: Two-Way Databinding�� 127

Chapter 20: Working with Forms �� 132

Chapter 21: Angular 2 Model-Driven Forms �� 139

Chapter 22: Angular 2 Form Validation �� 147

Chapter 23: Angular 2 Form Validation with Control Object and Custom Validation �� 154

Chapter 24: Template-Driven Forms�� 164

Chapter 25: Services�� 170

Chapter 26: Dependency Injection Overview�� 178

Chapter 27: Using Services��� 183

Chapter 28: Observables and Reactive Programming �� 191

 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Chapter 29: Send and Receive Data with HTTP�� 202

Chapter 30: Using Built In pipes and Parameterized Pipes�� 217

Chapter 31: Angular 2 Custom Pipes�� 229

Chapter 32: Using Custom Components in Angular 2 Components and Services�������� 233

Chapter 33: Understanding Routing�� 241

Chapter 34: Parameterized Routes and Creating Sub-Routes�� 252

Chapter 35: Angular 2: Unit Testing Framework �� 263

Chapter 36: Angular 2: Simple Component Testing�� 268

Chapter 37: Testing Angular 2 Service�� 279

Chapter 38: Testing Http Request�� 286

Chapter 39: Model Driven Form Testing �� 291

Chapter 40: Angular 2 Debugging�� 298

Chapter 41: Building and Deploying Angular 2 App using WebPack ���������������������������������� 305

Chapter 42: Building Secure Angular 2 apps�� 316

Chapter 43: Angular 1 to Angular 2 Cheatsheet �� 326

Lesson 1: Write Applications Fast Using Ignite UI Grid�� 355

Lesson 2: Write Applications Fast Using Ignite UI Data Charts�� 360

Lesson 3: Sort, Filter, and Page Fast With Ignite UI Grid�� 367

Lesson 4: Run Fast Using Virtualization in Ignite UI Grids�� 373

Lesson 5: Run Fast with Large Sets of Data in Ignite UI Data Charts ������������������������������������ 378

Lesson 6: Zoom Fast with Ignite UI Zoombar�� 381

Lesson 7: Ignite UI With Different Package Managers�� 385

Lesson 8: Write React JS Apps with Ignite UI�� 389

Lesson 9: Look Great With IgniteUI Themes�� 394

1Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

1
ECMAScript Overview

ECMASCRIPT IS A LANGUAGE standardized by ECMA International and overseen
by the TC39 committee. JavaScript is a language based on the implementations of
ECMAScript. In June 2009, the 5th edition of ECMAScript called ECMAScript 5 or ES5,
was standardized. This standard was implemented by all modern browsers.

In June 2015, the ECMAScript committee released a major update of the specifications
and added some much-needed features to make the job of JavaScript developers
much easier. This 6th edition of ECMAScript was previously called ECMAScript 6 or
ES6. It has now been renamed ECMAScript 2015.

In June 2016, ECMAScript 2016—the 7th edition of ECMAScript was released.

Describing all of the improvements made by ECMAScript 2015 would require an entire
book. Instead, this chapter will serve as an overview of some basic features that we'll
use throughout this book. If you are interested in a deep dive in ES6, you may refer
to: https://hacks.mozilla.org/category/es6-in-depth/.

This chapter assumes that you have basic working knowledge of JavaScript and have
worked on at least one object-oriented language such as C# or Java.

NOTE: The ECMAScript 2015 and 2015 standard has been
implemented in most modern browsers, but not in all of
them. To use ECMAScript 2015 code in browsers that sup-
port ES5, you can use transpilers which takes ES6 code and
converts it to its ES5 equivalent that most browsers can
understand. To check for a list of features supported by a
particular browser or a transpiler, visit the ES6 compatibility
table: http://kangax.github.io/compat-table/es6/.

2 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

New ECMAScript 2015 Features

BLOCK SCOPING WITH LET AND CONST KEYWORDS

Up to ECMAScript 5, JavaScript variables had only two types of scopes: global and
function. JavaScript lacked the block scope—a scope where variables are declared
to be made as local as possible.

Consider this piece of code:

Listing 1.1: for loop variable

After running this code, you’ll see the following output on the console:

For a programmer who has worked on any other programming language like C, C#
or Java, declaring tmp inside a for loop means the intent is to use tmp only within

Chapter 1

3

ECMAScript Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

the context of that loop. The tmp variable should not be accessible outside the loop.
The expected output would be an error saying tmp is undeclared.

However, in ECMAScript 5, the tmp variable actually scopes itself to the enclosing
function, which can be confusing.

To eliminate this confusion, ECMAScript 2015 introduces the block scope. Block scoping
works on the bracket level, rather than the function level. This allows the scope of
the variable to be limited to only the block in which it is declared. ECMA members
could not change the behavior of the var keyword, as that would break backward
compatibility. Hence, two new keywords were introduced: let and const.

To understand let and const, and the difference from var, let us first consider the
following statements, declared outside a block:

The first statement creates a global variable, which is a property of the global object.

The second statement creates a global variable, however, this variable does not belong
to the global object.

The third statement is a global constant, and is not a property of the global object.

LET KEYWORD

Simply put, let is the new var. However, the let keyword allows JavaScript developers
to define block-level variables, rather than global variables or function block variables.

Consider the same example as seen in Listing 1.1, albeit with the let keyword instead
of var.

4 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

With the let keyword, the output is as expected. In a strict mode, the last statement
would throw an error as tmp is not declared at the function level.

CONST KEYWORD

In ECMAScript 5, there is no direct way to define a constant. ECMAScript 2015 solves
this problem with the const keyword.

Like let, const also has a block-level scope, but it requires you to provide an initializer
before you can use it. Moreover, once you declare a variable using const, you can't
change its value.

While the first output is Suprotim, the second output is "TypeError: Assignment
to constant variable", since you cannot change the value of the constant
once it's created.

NOTE: const has nothing to do with immutability of val-
ues. When it is said that its value cannot be changed, what
is meant is that there is a flag set on the identifier binding,
and it is this binding that is immutable.

Chapter 1

5

ECMAScript Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Template literals

Template literals are a new way to define strings. Since template literals are declared
using backticks (`) as shown here:

You can now do the following without having to escape double quotes:

Template literals look better and are easier to read, especially when used in multi-line
strings, and while concatenating strings. Here’s an example:

Output:

6 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

As you can see, in concatStr we had to resort to messy concatenations, and escape
sequences. However, using the new template literals feature of ECMAScript 2015, we
were able to use backticks (`) and placeholders ${} to achieve the same output.

These placeholders can contain any JavaScript expression including a variable, object
property access, and even function calls. These tag expressions get called with the
processed template literal, which you can then manipulate before outputting them.

Arrow Functions

Arrow functions allow you to write an inline function that can be passed in to another
function. Arrow functions were introduced in ECMAScript 2015. They are syntactically
very similar to C# lambda functions.

Here’s an example of using an Arrow function:

The first example uses a JavaScript function.

The second example uses Arrow function in a statement body.

The third example uses Arrow function in an expression body.

One huge advantage of the Arrow function is that it retains the lexically-scoped ‘this’
variable. In other words, arrow functions share the same lexical this as their surround-
ing code. Sometimes when the lexical scope of ‘this’ changes, you lose track of what
it was referring to. However, with Arrow functions, the value of ‘this’ is preserved.

Classes and Inheritance

Despite the fact that we cannot compose classes in JavaScript as we do in Object
Oriented languages, we can compose comparative constructs using the prototype

Chapter 1

7

ECMAScript Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

property of Objects. There is a learning curve around the prototype property before
one can start utilizing it serenely to compose OOPs like code in JavaScript. To ease this
learning curve, ECMAScript 2015 uses classes. Classes in ECMAScript 2015 are similar
to prototype-based inheritance. You can consider them as syntactic sugar over the latter.

Using ECMAScript 2015 classes, we can write classes, create objects, inherit and
override features of parent class inside child classes.

Here’s an example of using Classes and Inheritance in ECMAScript 2015:

Listing 1.2 Classes and Inheritance in ES6

8 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Classes can be inherited from other classes using the extends keyword. In this code,
we have a parent class Person, and a child class Employee that is an extension of the
Person class. Here Person is also referred to as the superclass, whereas as Employee is
referred to as subclass.

The constructor is a function that gets called when you create a new instance of the
class. In our example, we have used let supro = new Employee("Suprotim",
"37", "Curry guy"); to invoke the constructor.

NOTE: In JavaScript, there can only be one constructor for
a class.

super is used in subclass Employee to refer to the superclass Person. Note that in the
constructor of Employee, we are calling super as if it were a function. Internally, this
calls the superclass Person’s constructor function, and initializes the new object that
was created by the keyword new.

super can also be used to access all members of a parent class. In Listing 1.2, we are
using super.printName() in Employees printName() method, to call the superclass
Person’s printName() method.

Running the code in Listing 1.2 will produce the following output:

NOTE: Object.create can be used to do prototypical inheri-
tance without using constructor functions.

Modules

In ECMAScript 2015, a module is a file containing JavaScript code. ECMAScript supports
exporting and importing modules across different files.

Chapter 1

9

ECMAScript Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

There’s no module keyword per-se in ECMAScript 2015. A module is just like a script,
except that it is in strict-mode and contains import and export keywords.

export: All members of a module are local to it. In order to make it public, use the
export keyword.

import: When you run a module with an import declaration, the imported modules
are loaded first, then the module body is executed.

Let’s take the example of a simple add.js file:

Here we are exporting functions along with variables one by one.

To use it inside another file, say test.js, do the following:

Here we are importing only the num variable from add.js.

We can also import everything inside add.js using import *:

NOTE: You can export all members of a Module using ex-
port *.

Conclusion

This chapter presented a quick overview of some ECMAScript 2015 features that you
will be using throughout this book. For a detailed tutorial, reference: https://hacks.
mozilla.org/category/es6-in-depth/.

10 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

2
TypeScript Overview

IN THE FIRST CHAPTER, we discussed how ECMAScript or ES lays down the
standard for scripting language and how JavaScript is based on this standard.

ES5 (JavaScript 1.5) was released in June 2011 and has the most consistent support
across all browsers. In June 2015, ECMAScript 2015 (previously known as ES6) was
approved, followed by ECMAScript 2016 (previously known as ES7) in June 2016. (Yes!
June is ECMAScript month.) The improvements in the new ECMAScript specification
boost productivity by providing features aimed at modern application development.
However, most modern browsers do not support ECMAScript 2015/2016, so ECMAS-
cript 2015 code must be “transpiled” to ES5 via npm, or via a code editor like Visual
Studio Code, before it can be used. The transpilation process involves converting
ES 2015 syntax to comparable ES5 syntax (standard JavaScript) so that most modern
browsers can execute it. This is a win-win situation for both browsers and developers,
as the browsers get code they can understand, while developers get to use all the
latest productivity features of ECMAScript.

Angular 2 applications can be written with both ES5 and/or ECMAScript 2015, along
with TypeScript.

Introducing TypeScript

TypeScript is an open-source programming language from Microsoft, written on
top of JavaScript to support types. First announced in October 2012, it comes with
powerful type-checking abilities and object-oriented features. It also leverages ES6
as part of its core foundation. Angular 2 uses TypeScript as its primary language for
application development.

All of the proposed features of ES 2015 and ES 2016 are implemented by TypeScript, or
are in the process of being implemented. These features are converted into their ES5
equivalent when the TypeScript files are transpiled, making it possible to use the latest
features of JavaScript even when the browsers have not implemented them natively.

Chapter 2

11

TypeScript Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Figure 1: Relationship between ECMAScript and TypeScript

Here are some important points to keep in mind:

•	 TypeScript is a typed superset of JavaScript and compiles
to plain JavaScript.

•	 TypeScript can be used to write everything that can be
written in JavaScript.

•	 TypeScript files have the extension .ts
•	 TypeScript is not a completely new language and is not

intended to replace JavaScript in any way. It adheres to all
principles of JavaScript and just adds types on top of it. Strict
type checking system makes the code more predictable. The
type system of the language helps in solving many issues
during development, which are challenging to catch until
runtime.

•	 Since TypeScript supports types, it looks very familiar to any
other typed OOPs languages like C# and Java.

•	 TypeScript is not executed on the browser. Instead, the
transpiled code gets executed in the browser.

Your ES6 code can be quickly converted to TypeScript code by just renaming the file
extension from .js to .ts. For example, see this piece of code of a file test.js, which is
valid ECMAScript 2015, as well as TypeScript. Just renaming this file to test.ts makes
it TypeScript:

12 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

TypeScript can target multiple versions of JavaScript, including ES5, ECMAScript 2015
or 2016.

Forexample, consider this TypeScript class:

It easily gets transpiled to ES5:

Chapter 2

13

TypeScript Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The same holds true for any existing JavaScript library. All you need is a type definition
file declaring types for the APIs exposed by the library. The GitHub project Definitely
Typed is a repository for high- quality TypeScript type definitions. These files are made
available through a package manager to make it easier to install and use the type
definition files.

Note 1: You can also try transpilation online using Type-
Script playground: http://www.typescriptlang.org/play/

Note 2: We will use VS Code throughout this book to write
Angular applications using TypeScript. Chapter 5—Angular
2 Development Environment gives you a step by step over-
view of using TypeScript using VS Code.

TYPESCRIPT CRASH COURSE

Now that we have taken a quick overview of TypeScript and why it exists, let’s look
at just a few of the more important features that will be used in the rest of the book.
For a detailed tutorial on TypeScript, please refer to http://www.typescriptlang.org/
docs/tutorial.html

TYPES

TypeScript defines a set of basic/primitive and general purpose types.

14 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

PRIMITIVE TYPES

TypeScript inherits five primitive types from JavaScript—String, Number, Boolean,
undefined and null.

String: can be assigned with single or double quotes. You can also use template strings.

Number: stores any number as integer or float. All numbers in TypeScript are floating
point values. TypeScript supports hexadecimal, decimal literals, and also supports
binary and octal literals.

Boolean: stores true or false values.

For example:

Undefined refers to a variable that has no value or object assigned to it, whereas null
refers to a variable that has been assigned an object, but that object is null.

Apart from these primitive types, we also have Array, Enum, Any, and Void.

ARRAYS

You can create Arrays in TypeScript in two ways:

or using Generics and “<>”

TypeScript also supports Arrays of Arrays, also called as Multidimensional arrays:

ANY

If you are declaring a variable without using a type and without assigning any value
to it, the TLS assigns it the any type. Think of any as a supertype of all types, which
is used whenever TypeScript is unable to infer a type. You can also assign the any

Chapter 2

15

TypeScript Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

type explicitly, which allows it to assume any value—from a simple string, number,
Boolean, or even a complex object.

ENUM

Enumerations give a friendly name to a set of values:

VOID

Void signifies that a method does not have a return value:

INTERFACES

In TypeScript, interfaces are used to describe types. They are compile-time constructs
that are used to define the contract for a class by just declaring the methods and fields.

Consider the following interface:

This interface is inherited by a class, and the class implementing the interface defines
all members of the interface. To implement the interface, use implements:

TypeScript interfaces can apply to functions, properties, and also to arrays. Here’s an
example of applying it to a function:

16 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Classes

Classes are used to define blueprints of objects. Although classes are not present in
ECMAScript 5, they are a part of ECMAScript 2016 and TypeScript. The class syntax
system of TypeScript is very similar to C#, as well as the ECMAScript 2016.

Here’s an example of a class with a property, constructor, and method:

The default access specifier in TypeScript is public. In our case, method greet() is public.
We can instantiate the class using the new keyword, and call the public members
of the class using the object (greeting):

NOTE: If you do not want a field or method to be accessed
directly using the object, make it explicitly private.

NOTE: TypeScript has no equivalent to C# Struts.

Functions

Functions describe how to do things and are the building blocks of any application.
TypeScript functions can be created as named functions (class methods), as anonymous

Chapter 2

17

TypeScript Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

functions (no name), and as global functions (created outside a class). The functions
can have typed arguments and a return type.

Consider the following named and anonymous functions:

NOTE: TypeScript doesn’t allow passing variables of differ-
ent types into the function unless there are explicit declara-
tions of the function with those types.

DEFAULT VALUE FOR PARAMETERS

You can pass a default value to a function parameter:

OPTIONAL PARAMETERS

Functions can have Optional parameters as well:

ARROW FUNCTIONS

Arrow function allows you to write an inline function that can be passed in to anoth-
er function. Arrow functions are not present in ECMAScript 2015, but they are in

18 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

ECMAScript 2016 and TypeScript. They are syntactically very similar to C# lambda
functions.

Here’s an example of using an Arrow function:

One huge advantage of the Arrow function is that retains the lexically-scoped ‘this’
variable. Sometimes when the lexical scope of ‘this’ changes, you lose track of what
it was referring to. However, with Arrow functions, the value of ‘this’ is preserved.

DECORATORS

Decorators are used to extend the behavior of a class, property, method, or method
parameter without modifying the implementation. In some languages, decorators are
referred to as annotations. Decorators use the form @expression, where expression
must be a function that will be called at runtime with information about the decorated
entity.

Creating and using decorators is very easy.

Here’s a simple decorator example:

Chapter 2

19

TypeScript Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

A custom decorator is a function that accepts some arguments containing details of
the target on which it is applied. It can modify the way the target works using this
information.

The following snippet defines and uses a decorator:

Here the decorator nonEnumerable sets the enumerable property of a field to false.
After this, the property won’t be encountered when we run a for…in loop on the
object. The loop written at the end of the snippet prints the property age alone.

Conclusion

TypeScript has a number of useful features and we have barely scratched the surface.
The concepts explained in this chapter will help you code Angular 2 applications,
which make use of TypeScript extensively. To dive deeper into TypeScript, refer to:
https://www.typescriptlang.org/docs/tutorial.html.

20 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

3
Angular 2 New Features

A Brief History of Angular

Web development has experienced a number of changes in the last couple of years. Web
pages that were rendered completely from the server, got a paradigm shift with
technologies like Adobe Flash and Microsoft Silverlight. These plugins added richness
to the browsers to improve the user experience. Unfortunately, as browsers were made
to understand and render something that was not built into them, they became bulky,
inconsistent, and error-prone. However, the richness brought about by each plugin
resulted in significant changes to the language of the web(HTML).

With HTML5, browsers absorbed this richness natively along with a number of new
elements: storage mechanisms, improvements to APIs, and new technologies for
real-time communication. These additions to the browsers over the past few years
made them more consistent and advanced than ever before. These changes naturally
brought a lot of power to the developers working on front-end technologies.

The availability of this type of richness in HTML5 resulted in a wider usage of JavaScript.
Developers around the world started innovating with the combination of JavaScript
and the power of HTML5 to build sophisticated web applications. These applications
incorporated the power and capability that Flash and Silverlight had previously pro-
vided, all the while being truly native applications. JavaScript libraries like jQuery
further changed the game by allowing developers an easy way to deal with browser
inconsistencies.

Web developers started using these newly acquired powers to their fullest potential.
Client-side scripting started getting heavier and the web was more feature-rich than
ever. The richness improved each day and eventually Single Page Application (SPA)
design pattern started gaining a lot of traction. An SPA moves much of the logic that
was previously executed on the server to the client using JavaScript. This approach
makes lightweight calls to the server to fetch data and then performs operations like
binding data, view rendering, user interaction, and more—all on the client.

Initially, developers could select from multiple libraries specialized to handle different
aspects of an SPA, but building a full-fledged SPA was no easy task. Integrating disparate

Chapter 3

21

Angular 2 New Features

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

libraries required a lot of work, making the process of building and maintaining the
application difficult and steepening the learning curve. What the industry needed
was a single framework that seamlessly integrated all or most of the aspects of an SPA.

Angular was released by Google to ease the pain in SPA development. As a single
framework responsible for handling all of the aspects needed to build an SPA, it acts
as a one-stop-shop for most of the needs of a single page application.

Why Angular?

Angular is a single framework meant to be the basis for easily building an SPA from
scratch. While Angular easy to use, it is built to withstand the complexities involved
in large projects by naturally lending itself to unit testing, modular design, industry
standard design patterns, and best practices.

Angular provides a more expressive way to deal with the presentation layer. Unlike
jQuery, which directly manipulates the DOM (making it a challenge to predict changes
in the view), Angular provides a way to teach new tricks to HTML via directives. For
example, consider the following piece of HTML:

The moment you read this fragment, you can clearly see that the element is going to
render a calendar with April as its month and 2016 as the year. With jQuery, achieving
something as declarative as this would be a challenge.

The framework defines a set of general purpose directives and gives developers the
option to write custom directives at will. Using directives, you can build your own
HTML elements or choose to extend existing elements or directives. The hope for
this type of expressiveness is that anyone will understand the most essential parts
of an Angular application by simply reading the HTML templates of the application.

Extensibility is one of the most important non-functional requirements of software.
Features of Angular like modularity, dependency injection, and enable extensibility make
it easy to test Angular code. Angular’s modular design naturally avoids using global
scope, which makes it easy to build unit tests. It is possible to unit test almost any
piece of code written using Angular. What’s more, the Angular team will even provide
mocks and helpers around most of the built-in objects.

Why a Complete Rewrite?

The first version of Angular, Angular 1.x was built when browsers still had inconsis-
tencies, JavaScript was not matured enough to support large applications, and the

22 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

tools around front-end development were still in their early stages. Angular 1.x tried
to solve most of these problems by building abstractions. Though the framework
was good at that time for building large JavaScript applications, the abstractions
that did exist made it harder for the framework to adapt to the changes happening
around the front end space. Following are some of the key reasons for rewriting the
framework from Angular 1 to Angular 2.

After Angular 2 announcement, the library previously known as AngularJS was renamed
to Angular.

A CHALLENGE TO EMBRACE NEW FEATURES ON THE WEB

The design of Angular 1 makes it difficult to use many of the advancements in
JavaScript and new features of the browser. In many cases, the feature cannot be
used unless we create an Angular wrapper around it. For example, any API has to be
wrapped around a service and to use a new DOM property, a custom directive would
be required. When using features like promises in ES6 in an Angular application, you
need to keep calling the digest cycle manually to have the page recognize changes
in the application. Further, using sophisticated features like custom Web Components in
an Angular 1 application is even more difficult, as it would require a lot of custom
work to make the two paradigms talk to each other.

It is almost impossible to change this behavior by modifying the code of the existing
framework, as it involves a substantial amount of change to the initial design. Further,
making such a big change to the existing code involves a lot of risk, and, needless to
say, much rework in testing and debugging the framework.

HEAVY CHANGE DETECTION SYSTEM

Angular 1 uses dirty checking to keep the model and view in sync and uses watchers
to check for the changes made to an object. As a result, pages begin to slow down
as the number of watchers grow. Building complex components becomes very
complicated as they often make use of binding expressions and filters, which then
require additional dirty checking and more watchers.

The scope object used for data binding in Angular 1 makes working with controllers
and directives unpredictable after a certain extent. This unpredictability can make
debugging the application difficult.

Change detection is even more complicated when a third-party library is introduced
into an Angular application. It is often quite difficult to use a third party non-Angular
library with Angular 1 without wrapping it inside an Angular block. As the library
raises events or initiates a change in the Model, you need to manually tell Angular
about the event. Otherwise, the change detection doesn’t kick in, and any changes
made to the Model are not reflected in the View.

Chapter 3

23

Angular 2 New Features

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

INEFFICIENT INTERACTIONS WITH DOM

Angular 1 uses jqLite or jQuery (when available) to perform DOM manipulations.
These wrappers around the DOM objects handle browser inconsistencies, but also
make the application inefficient as the application pays a performance penalty in
order to wrap or unwrap DOM elements. Beyond the technical issues, to be effective
in Angular you also must learn jQuery to perform DOM manipulations in Angular 1.

COMPLEX DIRECTIVE STRUCTURE

The Directive Definition Object (DDO) defined in Angular 1 is difficult to learn. It
provides too many options and some of them cannot be used together. In addition,
Angular 1 directives provide many low-level options that can puzzle even an experi-
enced developer learning Angular for the first time.

All of these reasons combined brought the Angular team to the conclusion that a
full rewrite was in order.

New Features in Angular 2

Angular 2 is built from scratch using the latest and greatest features available in the
web platform. It is built to support the scale at which JavaScript is used in modern
web development to create rich web applications and hybrid mobile applications.
The framework went through significant changes to the core design to use the most
modern APIs available on the web platform. Angular 2 adapts the conceptual strengths
from Angular 1 and implements them using improved approaches. Angular 2 contin-
ues to embrace principles like extensibility, testability, modularity, and separation of
concerns while making it easier for developers use Angular. The following are a few
ways that development is getting easier in Angular 2.

LOOKS MORE LIKE PLAIN JAVASCRIPT

One of the goals of Angular 2 is to fully embrace features of JavaScript. Rather than
building its own abstractions, Angular 2 leverages the features of ES6 and ES7 like
classes, decorators, modules and various others, so that developers don’t miss using
the power found in the core of JavaScript.

EFFICIENT CHANGE DETECTION

A rich internet application would be incomplete without a mechanism for keeping
objects and views in sync. Angular 2 comes with a much-improved and flexible change
detection mechanism. This new system allows applications to take advantage of the
observable objects as well as immutable objects. The framework understands how
these objects work. Angular doesn’t keep checking for changes in the values of such

24 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

objects. Instead, it uses the notification system built into these objects to detect the
changes which gives the application an opportunity to use the best possible change
detection-enabled object.

The change detection system doesn’t require manual intervention. Angular uses zones
to manage all operations and zones run on every browser event. Whether it is an
asynchronous operation, a user action, or an event from a third party library; zones
are smart enough to run the change detection again when these events occur.

REDUCE DIRECT DOM MANIPULATION

Angular 2 embraces improved bindings beyond what is available in Angular 1. Rather
than using jqLite or jQuery, Angular 2 uses the browser’s APIs for DOM manipulation
in an attempt to totally abstract the DOM manipulations from developers. To do so, it
embraces bindings and doesn’t provide direct access to the DOM elements in most
situations. This architecture makes the same piece of code that runs on the web and
mobile require a slightly different setup of Angular 2 to support both the platforms.

BETTER TEMPLATING

Angular 2 doesn’t wrap the DOM properties and events in individual directives. Instead,
DOM properties and events can be data-bound to a model without wrapping it in an
Angular block. The DOM property must be enclosed inside square brackets (e.g. [title]),
and the DOM event must be enclosed inside parentheses (e.g. (click)) to indicate that
they are data bound. This takes away the pain of writing custom code to perform
operations when a model, bound to a property, changes. Further, this approach can
bind a model to any newly introduced HTML property or event without making any
changes to the framework and the application code.

EMBRACING COMPONENTS

An Angular 2 application starts with a component and it goes on building components
at every level of the application. The components are built on top of the HTML5 Web
Components standards, so they feel more native to the browser now. The browser’s
DOM APIs can understand these elements and they can operate along with the Angular
components. As there is no layer sitting between a component and the browser, they
can be easily made accessible.

SEO FRIENDLY

As single page applications are rendered completely on the client side, the web
crawlers cannot parse the content and hence the pages become less searchable.
To overcome this, Angular 2 supports server-side rendering. The application can be
pre-rendered on the server and served on the client side. Since the content delivered

Chapter 3

25

Angular 2 New Features

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

over the network is rendered HTML, web crawlers can read this content and search
for content in the rendered view.

Conclusion

Angular 2 comes with a set of promising features. It leverages advancements made in
modern development and features an extensible model for development. Angular 2
addresses many of the pain points found in Angular 1 today. Nevertheless, it respects
the concepts in Angular 1 that made the framework so successful and it builds upon
each feature. The forthcoming chapters detail the changes and advancements coming
in Angular 2.

26 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

4
Angular 2 Application Structure

ANGULAR 2 USES COMPONENTS extensively. A typical Angular 2 application
consists of components to define every part of the page. The components are added
to Angular modules.

Think of an Angular 2 application as a tree of components. These components are
linked together. The top most component is the Root component which contains all
other components, and is used by the Angular bootstrapper to start the application.

Here’s a typical Component tree in an Angular 2 application:

Figure 4.1: Component tree structure in an Angular 2 application

Chapter 4

27

Angular 2 Application Structure

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Every component is a self-sufficient piece of UI, screen, or route. A component is a
combination of a view and its view-model. It uses Services to get the data and displays
that data in views.

When the application is divided into multiple views and the views have to be loaded
based on the current URL, then each route is handled with a component. The route
invokes this component when it has to be loaded.

Angular 2 applications are modular. Angular 2 makes use of several ES6 modules
to keep the source code modularized, and it uses its own module system to group a
set of related Angular blocks together. It is important to understand that the purpose
of the ES6 modular systems is different from that of the Angular modules system.

The ES6 module system helps keep the source files as lean as possible. Each file
contains a component, a directive, a service, or any other block. These files export
their objects using the export keyword, and they are imported by other modules
using the import keyword. The third party libraries used in the application are also
loaded as ES6 modules. On the other hand, the Angular modules are used to group
a set of Angular 2 blocks together. These modules can be used to split an application
into multiple modules based on the functionality of a set of blocks. One module can
access other modules to use their functionality.

Angular 2 makes extensive use of Dependency Injection (DI) to load required objects
into any code block. It provides a single API for DI, which comes with all the power
needed for a complex application. The combination of modularity and DI makes
Angular 2 code much cleaner to read and to test.

An Angular 2 application is built using several Components, Services, Directives, Pipes
and other pieces. Let’s explore what each one does.

Directives

Directives are not new in Angular 2, but have been improved upon since Angular 1.
The Directives architecture in Angular 2 reduces the need for direct DOM manipulation
by providing a better binding system. Unlike Angular 1, where a directive has to be
named in camel case notation and used on the UI with dashed notation, Angular 2
has a unified way of naming and using the directive.

Angular 2 has three types of directives:

28 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Components

An Angular 2 application starts with a component; every route is associated with a
component and uses components to define different levels of the application. The
components consist of an HTML template as well as the logic to build a view-model
for this template. The HTML template uses Angularís binding syntax to bind the prop-
erties and methods of the view-model in the view. A component can load another
component in its template and interact with it.

Components use the existing features of HTML5 web components to bring the func-
tionality closer to the browser. Angular 2 has a built-in emulation to fill these features
in unsupported browsers. These features allow the component to be self-sufficient
and isolated from rest of the HTML. Components leverage the feature of Shadow
DOM, thus allowing an option to write styles specific to the component that don’t
affect the rest of the page.

The components have life cycle hooks like ngOnInit(), ngOnDestroy() that allow the
application to respond to key lifecycle events of the component.

DECORATOR DIRECTIVES

Decorator directives extend the behavior of an existing HTML element or an existing
component. These are the simplest kind of directives. They perform small sets of
actions, but at times these small features are critical for business. A decorator directive
can interact with its host via events. Using these events efficiently reduces the amount
of DOM manipulation one needs to perform. They can be used for actions like handling
certain events, applying a style, validating a value, and similar operations.

STRUCTURAL DIRECTIVES

The structural directives deal with the template rendered inside an element. They
can manipulate the template, depending upon the need. It doesn’t manipulate the
DOM inside the target directly, rather it uses the ViewComponentRef service provided
by Angular 2 to add or remove elements inside the target. This behavior makes the
directive platform agnostic.

Directives define lifecycle hooks. They can be used to detect when a lifecycle event
occurs and act accordingly. Applications written in TypeScript can use the interfaces
corresponding to the lifecycle hooks; doing so will result in better tooling support.

Change Detection

At the heart of every front-end framework is a technique to detect changes made
to the objects. Whenever the values of objects are bound on the UI change, the

Chapter 4

29

Angular 2 Application Structure

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

framework needs to be notified so that it can update the UI to reflect these changes.
This technique is called Change Detection. Angular 2 brings a much more powerful
and efficient way to detect changes on the objects. It comes with a built-in change
detection mechanism, and allows the applications built on the framework to use a
third party technique as well. The framework has an open end that allows the use of
objects that provide a better mechanism to detect changes. As of now, the following
object types are used with Angular 2:

IMMUTABLE OBJECTS

An immutable object is one that is recreated when any change is made to the object.
It has a built-in notification system, which notifies users of the object about changes.
Listeners can be attached to these notifications and can perform an action corre-
sponding to the change.

OBSERVABLE OBJECTS

An observable object has a reactive way to notify changes. It emits an event when an
object changes its value. Users of the object will have to subscribe to such change
events and then perform the required operation.

Angular 2 understands these notification systems. It listens to their events when these
objects are bound to the application. The DOM tree, under a component using one
of these objects, changes only when the notification is received.

When observables or immutables are not used for binding, Angular uses dirty checking
to check for changes in the objects. On every browser event, it kicks in the change
detection and the dirty checker scans view models of all the views and applies the
changes.

When Angular encounters an observable or an immutable object, it doesn’t scan
the entire tree for changes. Instead the component sub-tree under a component
is scanned when Angular receives a notification from the object about the change.
This model makes the application efficient, as it doesn’t need to traverse through the
entire application on every browser event.

30 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Figure 4.2: Change detection

Figure 4.2 shows an example of how change detection works. Each node in the tree
is a component. The component 3 uses an observable or immutable type of object
and rest of the components are using default JavaScript objects. When data in the
components 1, 2, or the child components of 2 are modified, the change detection
system checks for any changes in all of the components marked in white. The com-
ponent 3 and its children are checked for changes only when there is a change in
the data in the component 3.

It is possible to use both immutable and observable type of objects in one application.
Different components can use different types of objects. The recommended approach
by the Angular team is to mix them by using observable for data received from any
request sent to a server, and to use immutable for the objects inside the application.

Services

Services are simple ES6 or TypeScript classes which perform an operation like fetching
data from an API, maintaining a WebSocket connecting to interact with the server,
handling business logic or any reusable logic. A service can be injected into another
service, a component, a directive, or any Angular 2 code block. Services help in
achieving Single Responsibility Principle (SRP) and keeping the code cleaner.

Chapter 4

31

Angular 2 Application Structure

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Pipes

The data received from a source has to be displayed to the user. Sometimes the data
received might not make the user happy, as the user may want to see that piece of
data in a different format. Pipes are used in such cases. A pipe takes a piece of data,
transforms it to a different format, and returns it to the binding expression. Pipes are
used in the binding expressions, along with the model used to bind.

Forms

Accepting user inputs is one of the most essential parts of any application. At times, it
becomes a challenge to handle the user inputs when the business needs many fields
to be filled in by the user and has a lot of validations to perform. Angular 2 provides
good support for Forms. A form in an Angular 2 application that can either be driven
by a template or by a model.

Template-driven forms are composed in HTML and the elements in the form are bound
to a model. Behavior of every element in the form can be inspected in its component
using the ngControl field on the element. The changes on the element can be tracked,
value can be validated, and the validation status can be attached using this field. This
approach is more declarative as most of the form lives in HTML.

In case of model-driven forms, a form model object is created in the component and
is assigned to the HTML form element using the ngFormModel property. Angular 2
understands this property and it keeps both the entry in the form model object and
the view in sync. The component can make use of the form model object to inspect
values in the form.

Routing

The framework that supports Single Page Application development allows switching
the views on the client side without refreshing the whole page. It updates a portion
of the page and changes the URL so that one can bookmark it, and come back to
the specific view instead of starting the navigation again from the first page. This is
called client side routing.

Like every SPA framework, Angular 2 supports routing. Angular 2 has a router called
Component Router, which is named so because it loads components. It provides a way
to define routes, provides directives to load a route, and to link a route. Component
Router can be used to define nested routes. Like directives, a router also provides
several life cycle hooks. Using them, routes can be authenticated, data required by
the page can be loaded before loading the route, or operations like unbinding an
event can be performed.

32 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Dependency Injection

Dependency Injection (DI) is a programming pattern that is used to inject dependencies
from an external source, rather than creating them in the code block itself. Angular 2
has its own DI framework. Using DI, the services can be injected into any code block
in Angular 2. Unlike Angular 1.x, which had multiple ways to inject dependencies,
Angular 2 has a single syntax to inject dependencies. The DI system in Angular 2
also works in a hierarchical fashion. The dependencies of a component have to be
declared before injecting them. They can be declared either in the module or in the
component. Once declared, they can be injected anywhere in the module or at any
level under that component.

It is also possible to make a dependency singleton or non-singleton, depending on
the need. A dependency can be marked as optional as well; the code block using the
dependency is made responsible to handle it when the dependency is not available.
Angular 2 provides ways to inject a child class object when a parent class is used for
injection, a static object value instead of a newly instantiated object, and dynamic
dependencies based on presence of certain values in the environment.

The DI system makes the application testable. DI can be used in the spec files to
override the dependencies with mocked objects using some simple APIs. This prevents
the tests from hitting the actual definition of the classes, and isolates the tests from
rest of the world.

Modules

As mentioned earlier, modules in Angular 2 are used to group a set of related compo-
nents, directives, pipes, and services together. Angular 2’s module system is different
from the ES6 module system. The ES6 module system encapsulates the contents of
a file, and the Angular 2 module system encapsulates a set of Angular blocks. Here
are some features of a module:

•	 The blocks added to a module can be used inside the module.
•	 A module can import one or more modules to use the code

from that module.
•	 An Angular 2 library can make use of a module to export its

functionality to rest of the world.
•	 An Angular 2 application bootstraps with a module.
•	 A module can declare one or more of its components as

bootstrap components.
•	 Execution of the module will begin with the bootstrapped

component.

Chapter 4

33

Angular 2 Application Structure

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Conclusion

Angular 2 comes with a number of new features, as well as improved versions of
some Angular 1 features. Each of these features is designed with ease of use and
ease of maintenance in mind. We will dive deeper into each of these concepts as we
move forward.

34 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

5
Angular 2 Development Environment

THE PREVIOUS CHAPTERS (see Chapters 3 and 4) explored some new features
that Angular 2 brings to the table. Now that we have a basic understanding of what
Angular 2 is all about, let’s see these features in action. In this chapter, we will create
a development environment or a workspace which will be used as a base for all the
upcoming chapters.

Setting Up the Environment

WRITE BETTER SOFTWARE WITH THE RIGHT TOOLS—CHOOSING AN EDITOR

Today there are a wide number of tools and IDEs available for JavaScript and TypeScript
development. Some options for Windows, Mac, and Linux users are: Visual Studio
Code (Free), Atom (Free), NetBeans (Free), Sublime Text (Commercial for continued
use), and WebStorm (Commercial). Tools can be selected depending on the features
they provide, as well as our comfort level. For this book, the editor of choice is Visual
Studio Code (VS Code).

VS Code is a beautiful, light weight, free and open source editor from Microsoft. It is
available for Windows, Mac, and Linux. VS Code provides very good support for front-
end development in general. For example, VS Code can open any folder containing
code; it need not be a special folder with some configurations and project files.

The editor has nice tooling support for TypeScript as it provides good Intellisense,
detects presence of type definition files, provides code navigation, reports possible
typing errors, and understands ES2015 and ES2016 syntax based on TypeScript con-
figuration in a project. These features make VS Code a good candidate for modern
web development. To explore TypeScript, download and install it at: https://www.
typescriptlang.org/.

WHY TYPESCRIPT?

Though TypeScript is not the only language supported by an Angular 2 application
(Angular 2 applications can be written using both ES2015 and ES2016 versions of

Chapter 5

35

Angular 2 Development Environment

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

JavaScript and Dart too), it is highly recommended to use TypeScript because of the
features we have already discussed in Chapter 2.

Installing Dependencies

Let’s take a moment to understand what is needed to build and run an Angular 2
application. For the development environment, the following tools should be installed
on the machine and in the project:

1.	 Node.js
2.	 TypeScript compiler
3.	 Angular 2 packages and dependencies of Angular 2
4.	 SystemJS
5.	 Koa.js, a node.js based server framework

Out of these, the first two dependencies have to be installed at the system level, and
the next three have to be installed in the project.

Node.js is the server platform that provides a way to write server-side code using
JavaScript. It is also widely used as a development environment to build front-end
applications. If Node.js is not already installed, download the latest version from the
official site (http://www.nodejs.org) and install it. Once the installation is successful,
Node.js and the Node package manager (npm) will be installed on the system.

The global npm package of TypeScript must be also be installed. The purpose of the
TypeScript packages is to compile TypeScript files from command line. As discussed in
chapter 2, TypeScript has to be converted to JavaScript before loading on the browser.
The TypeScript package helps in transpiling TypeScript code to JavaScript. If these
packages are not yet installed, run the following commands to install them globally:

> npm install –g typescript

To set up the project, create a new folder and name it ng2DevelopmentEnvironment.
Feel free to change the name. Open this folder in VS Code. Open a command prompt
and move to the newly created folder. As a first step, add package.json to the project.
This file is to keep track of the installed npm dependencies in the project. There is no
need to type this file manually, it can be generated using the following command:

> npm init

After running this command, answer a couple of questions about different values to
be stored in package.json file. Figure 5.1 shows an instance of the command being
executed:

36 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Figure 5.1 —Initializing package.json

Once the questions are answered, a package.json file gets created as shown in
Figure 5.2

Figure 5.2: Initial package.json

Chapter 5

37

Angular 2 Development Environment

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Let’s install the required packages in the application. The following commands install
these packages:

> npm install @angular/common --save

> npm install @angular/compiler --save

> npm install @angular/core --save

> npm install @angular/http --save

> npm install @angular/platform-browser --save

> npm install @angular/platform-browser-dynamic --save

> npm install @angular/router --save

> npm install es6-shim --save

> npm install reflect-metadata --save

> npm install rxjs --save

> npm install systemjs --save

> npm install koa --save

> npm install koa-static --save

> npm install livereload --save

Though TypeScript is installed globally, having a local version as well gives the flexibility
of using multiple versions of TypeScript on the same machine, and the local package
comes in handy when the application has to be built on a build system. The following
command installs TypeScript:

> npm install typescript --save-dev

38 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

NOTE: The libraries are installed using the --save option
and TypeScript is installed using the --save-dev option. The
difference is, the packages installed using the --save op-
tion are production dependencies, whereas the packages
installed using the --save-dev option are required in the
development environment. The libraries that are referred in
the source code of the application are installed using the

--save option. The packages used to create the development
tasks like transpiling the code, minifying and uglifying the
code, and to watch for changes during development, are
installed using the --save-dev option.

The Angular2 package has a couple of peer dependencies, installed along with it
and are saved into the package.json file. After running the above commands, the
Dependencies section of package.json file looks as shown in Figure 5.3:

Figure 5.3: dependencies and devDependencies sections

The TypeScript typings for angular2, rxjs, zone.js and reflect-metadata are installed
with the packages. The typings of es6-shim have to be installed using npm. Run the
following command to get the typings of es6-shim:

> npm install @types/es6-shim --save-dev

Chapter 5

39

Angular 2 Development Environment

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

It adds an entry to the devDependencies section in package.json file, and the modified
section is shown in the following figure:

Figure 5.4: devDependencies after installing types

NOTE: You might have used the package managers like tsd
or typings to install the TypeScript typings. The TypeScript
team created the scoped @types package in npm to simpli-
fy the process of installing the type definitions. TypeScript
version 2.0 and above can work with @types. typings and
tsd will continue to work, but the packages may not get the
new versions once adoption of @types becomes wider.

Setting Up TypeScript Transpilation

Transpilation is a process of converting the code into a language of the same level.
We are already familiar with the term compilation, which is the process of converting
code of a language to a lower level language. As both TypeScript and JavaScript are
languages of the same level, the conversion process is called transpilation. To see
how TypeScript transpilation works, add a sample TypeScript file. Add a new folder
to the application and name it app. A new folder can be added to the current folder
by using VS Code’s ‘New Folder’ button, as shown in Figure 5.5.

Figure 5.5: Adding a new folder using VS Code

40 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Now add a new file to this folder and name it main.ts. In VS Code, click on the ‘New
File’ button (see Figure 5.6) or use the context menu.

Figure 5.6: Adding a new file using VS Code

Let’s add a sample class to this class. This class will be removed later.

Listing 5.1: A sample TypeScript snippet

To transpile this file, run the following command:

> tsc app/main.ts

This command fails to execute due to the export keyword of ES6 module syntax. To
resolve this error, provide the ES5 module syntax to produce in the transpiled file. The
following command transpiles the TypeScript file to ES5 with SystemJS module syntax:

> tsc app/main.ts --module system

Chapter 5

41

Angular 2 Development Environment

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

A number of other options can be provided with this command. Adding these options
to the command every time may lead to errors. To simplify, create a configuration file
to store these options; this file will be referred by TypeScript when the tsc command is
executed. The following is the content of tsconfig.json file needed for this application:

Listing 5.2: Content of tsconfig.json

Some important parts of the above configuration file are as follows:

•	 Target version of JavaScript is ES5
•	 Module system to produce is SystemJS
•	 ES6 modules are referred from node_modules folder along

with the current working directory
•	 Source maps for TypeScript debugging in the browser
•	 Decorator metadata is included in the transpiled files and

experimental decorators are enabled
•	 typeRoots specifies the folder from where the type defini-

tions have to be referred

Save this file and run the following command from root of the project:

> tsc

This command transpiles all TypeScript files in the application. As there is just one file
present under app folder, it is transpiled, and the transpiled JavaScript file is stored
in the same folder along with its source map file.

42 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Setting Up SystemJS Configuration

In order to start the application, load the Angular 2 module files and its dependencies
in the right order. These files must be loaded using a module loader. As SystemJS will
be used as the module loader, configure the modules needed to be loaded using it. The
following snippet shows the SystemJS configuration for the files that need to loaded:

Listing 5.3: Content of systemjs.config.js

Listing 5.3 registers maps to the source folders, which will help refer to the folders
when maps are used while loading modules. The packages section registers the file
to be loaded when a module is loaded, and the default extension to be used (when
the module refers to other files as modules). The last entry in the packages object

Chapter 5

43

Angular 2 Development Environment

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

configures the format in which the modules of the application must be loaded, as
well as the default extension of the files to be loaded.

Starting Angular 2 Application

Now that the workspace is set up, write a small amount of Angular 2 code to see the
workspace in action. To do so, add a component to the application. Add a new file
to the folder app and name it app.component.ts. This component will have an inline
template specifying that the application is bootstrapped. Add the following code to
this file:

Listing 5.4: Code of AppComponent

The main.ts file will have a module to register this component and to bootstrap the
application. Mention the component AppComponent in the bootstrap property of the
NgModule decorator. Replace the content in the main.ts file under app folder with
the following code:

Listing 5.5: Code of main.ts file

This code defines an Angular 2 component and bootstraps the application using it. It
needs the dependencies bootstrap and Component from Angular 2, so it loads them

44 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

using the ES6 module import syntax. The component has an inline HTML template,
which will be rendered inside the component. The class is passed into the bootstrap
function, which starts the application using this component. Creating a component
will be discussed in detail in Chapter 6.

To see things in action, add a HTML page to load this file. Add a new file to the
application and name it index.html and add the following content to it:

Listing 5.6: Code of index.html

This file loads all of the required libraries and polyfills to run Angular 2 on most of
the browsers. The SystemJS configuration file created in the previous step is loaded,
followed by the main module of the application. This module, in turn, loads the
modules of the Angular 2 framework.

Since SystemJS loads the files using XMLHttpRequest (XHR), a web server is needed
to run the application.

Chapter 5

45

Angular 2 Development Environment

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Setting Up A Node.js Server

The application needs a Node.js server to start serve the index.html file and a few APIs.
The npm packages for the server are already installed in the project. The code required
to setup the server has been provided in the downloadable files. Copy the file server.
js from the sample and paste it in your project. This file has the following content:

Listing 5.7: Code of server.js

This file starts a Node.js server from the current working directory on port 3000. It
allows loading any static content relative to the current directory. The server also
starts a livereload server to refresh the browser when there is a change in any of the
JavaScript files under app folder.

NOTE: As mentioned earlier, this sample uses Koa.js, a
Node.js based framework. It is a light-weight, robust frame-
work, built using the features of JavaScript introduced
in ES2015 and above. To learn more about Koa, you may
visit the official site: http://koajs.com.

Add a script element to index.html to refresh the browser whenever livereload detects
a change.

Listing 5.8: Script tag for livereload

46 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

livereload is an implementation of the LiveReload server in Node.js, which monitors files
for changes and reloads your web browser.

All the required files to run our demo are now present in the application. At this stage,
the file explorer pane of VS Code looks like Figure 5.7:

Figure 5.7: Files and folders in the project

Run the following command on a command prompt to start the application:

> node server.js

Open a browser and change the URL to http://localhost:3000. The browser loads the
page and displays the Angular 2 component on the page, as shown in Figure 5.8.

Figure 5.8: The running application

Chapter 5

47

Angular 2 Development Environment

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Note that making a change to main.ts file doesn’t refresh the browser, because we
are watching for changes made to the JavaScript files, and changes made to the
TypeScript file are not transpiled yet. Open another command prompt, move to the
folder where the application is, and run the following command:

> tsc -w

This command adds a watcher on all TypeScript files except the files mentioned in
exclude section of tsconfig.json file. Now make a change to the TypeScript file to see
the changes on the browser.

Running these two commands separately is tedious. To simplify, both of these com-
mands can be run together using the npm package concurrently. Install this package
globally.

> npm install -g concurrently

Add the following statement to the scripts section in the package.json file:

Listing 5.9: scripts section in package.json

Invoke this section using the following command:

> npm run start

Conclusion

Now that we are ready with an Angular 2 setup, we can explore the new features.
Please note that this setup is just for development and it doesn’t suffice for deploying
the project. Webpack is a popular tool for setting up production ready environments.
We will discuss a more sophisticated set up using Webpack in Chapter 41.

48 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

6
Introduction to Components

COMPONENTS FORM THE BACKBONE of Angular apps and define the individu-
al parts of an Angular 2 application. As previously mentioned, an Angular 2 application
starts with a component and loads components at every level in the application.

Any Angular 2 application can be described as a collection of a set of components that
are created to achieve a task together.

Components are used to create new HTML elements. They are independent, reus-
able, and are built on the concepts of HTML5 web components, making them very
compatible with all modern browsers.

Anatomy of Components

An Angular 2 application consists of a number of modules and one of these com-
ponents is responsible to bootstrap the application. The module will have a set of
components registered in it, one of which will be used to render the first view to the
user. This component, in turn, will load other components of the application. This
process makes the components the most important pieces of an Angular 2 application.
This chapter will introduce you to the components and explain the basic blocks of a
component.

A component is a JavaScript class with a decorator. The decorator defines how the
component should look on the page, how it has to be used, and the dependencies
of the component. The following snippet defines a component:

Chapter 6

49

Introduction to Components

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Figure 6.1: A simple component

Let’s examine this snippet piece by piece. The numbers listed here correspond with
the numbers listed in Figure 6.1.

•	 Statement 1 imports the member Component from the @
angular/core module using ES6 module syntax. This module
is defined in the Angular 2 library.

•	 Statement 8 defines the class HelloComponent with a field
named helloMessage and a method sayHello in it.

•	 Statement 3 adds the decorator Component to this class (@
Component). The decorator tells Angular that the class has
to be treated as a component.

•	 Statement 4 adds the selector property to the decorator.
This selector has to be used in the HTML view to render the
component. Unlike Angular 1, where the selector has camel
case notation in directive’s definition, and dashed notation
in the template; Angular 2 uses the same notation to both
define and use in a template.

•	 Statement 5 assigns a template to the component. Notice
that the template uses the field and the method defined
in the HelloComponent class. The parentheses surrounding
the click on the button tag (click) indicates that we are
binding an event. This syntax can be used with any HTML
event. The field helloMessage is used with the double curly
braces in the template, it is called interpolation. It binds the
value of the field on the page when it is rendered.

50 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

In Angular 1, the controllers built the view model and views were wired up with their
corresponding controllers while defining routes. Angular 2 combines these two pieces
into a component. An object of the component class is used as a view model, and it
is used for binding data in the view. The properties and methods of the component
class are directly accessible in the template.

In this example, the template uses the property in the class in a binding expression.
Angular does the following when a component is used in a view:

•	 Loads the template used by the component
•	 Creates an object of the component class and compiles the

HTML template using this object as the source of data. All
the properties and methods defined as members of this
class are accessible directly inside the template

•	 Appends the compiled content inside the component
element

If you are coming from an Angular 1 background, take note that in Angular 2, a component
is actually a View Component as it encapsulates the template, data, and behavior of a
view. There is no Controller in Angular 2. Component contains the view as well as the
selector, thereby mimicking the behavior of a Directive.

Declaration of Components

When a component has to use another component in its template, the second com-
ponent must be made available to the first component. The second component
has to be declared in the module of the first component. If the second component
is declared in another module, the module must be imported into the module of the
first component. Otherwise, the component won’t be compiled with the template.

Chapter 6

51

Introduction to Components

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 6.1: A Component using another component

As seen in Listing 6.1, the component MovieComponent uses the component Movie-
DetailsComponent in it. However, when MovieComponent is rendered on the view, it
doesn’t show the contents of MovieDetailsComponent. Why is that so? Though the
MovieDetailsComponent was used in the template, it was not declared in metadata
of MovieComponent that it will use the component MovieDetailsComponent. To fix
this, metadata annotation of AppModule has to be modified as shown in listing 6.4.

52 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 6.2: Registering components in a module

Now the MovieDetailsComponent is rendered in the MovieComponent. Figure 6.2
shows the mark-up generated inside MovieComponent when it is rendered on a
browser. This screenshot is taken using the developer tools of Google Chrome
(Ctrl + Shift + J):

Figure 6.2: Nested components in inspect window

Life Cycle of Components

Every component follows a life cycle and Angular provides hooks to these life cycle
events. These hooks can be used to detect when a certain life-cycle event occurs and
help in performing certain actions during the course of the events.

A component goes through the following phases:

Chapter 6

53

Introduction to Components

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

•	 It gets created when an occurrence is encountered
•	 Rendered on the page after compiling the template
•	 Follows the above steps for each child component it contains
•	 Processes changes when any change in data of the compo-

nent is detected
•	 Destroyed when the component is removed from the page

Let’s use one of the life cycle hooks of the components in the MovieDetailsComponent.
Listing 6.4 shows code of the modified component:

Listing 6.3: Component with Lifecycle hook

When the component is used, it first calls the constructor, followed by the ngOnInit
method because the data of the view is made available before initializing the com-
ponent.

54 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The interface OnInit and other interfaces for life cycle hooks are defined in the angular2/
core module. Implementing these interfaces is optional to handle a life cycle event;
the interfaces are used to guarantee the signature of the life cycle method.

Conclusion

Components, at the core of any Angular 2 application are: easy to create and use, make
markup of the application look declarative, are quite powerful, and can be used to
make the application highly extensible. We continue to explore additional features
of Components throughout the book.

55Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

7
Creating a Custom Component

COMPONENTS ARE THE CORE of any Angular 2 application. An Angular 2 appli-
cation cannot be started without a component, nor can any subsequent operation
in the application be performed without one. Chapter 6 outlined the basics of a
component and explained the API to create a component. Chapter 7 will extend that
knowledge by building a more meaningful component.

This chapter will demonstrate an example of a Master-Detail view to explain compo-
nents. The component will list orders placed by customers and, when the user wants
to view the details of each order, it will show the list of items in each order.

The new component will be added to a new folder to the development environment
created in Chapter 5. The following software and packages should be installed in the
development environment:

•	 Node.js: To start a web server to run the application, and for
the Node.js Package Manager (npm)

•	 TypeScript compiler: To compile TypeScript
•	 TypeScript typings installer: To install TypeScript typings of

the libraries used in the application
•	 Angular 2 and its dependencies: The libraries required for the

project. These are to be installed in the project using npm
•	 SystemJS: To load modules. To be installed in the project

using npm
•	 Koa.js: A Node.js framework to start a Node.js server

The process of installing these dependencies and starting an Angular 2 project has
already been explained in Chapter 5—Angular 2 Development Environment.

Create a folder named Master-Detail Component. Initialize the folder to build an
Angular 2 application. Alternatively, you can copy the files and folders of the setup
project into it and install the npm packages. Open the folder in Visual Studio Code
and make sure that the sample runs.

56 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Data and Types for the Component

To embrace strong typing of TypeScript, the application needs some classes and
interfaces to represent data types for orders and items. For this application, we need
two interfaces to represent the model of an item, an item in order, and a class to
represent order and to handle some functionalities for the order. Add two files to the
project named item.model.ts and order.model.ts. The listing 7.1 shows the contents
of these files:

Listing 7.1: Model classes and interfaces

Chapter 7

57

Creating a Custom Component

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The above code defines the following types:

•	 ItemInOrder: Interface representing model of an item added
to an order

•	 Item: Interface representing model of an item
•	 Order: Class that can hold an order object. It has a method to

calculate total price of an order, get details of all items added
to it, and a getter block encapsulating status of the order

All three types are exported out of their modules, so that they can be used by other
modules. The data required for the application will be stored in two static lists. The
items array will be added to the file item.model.ts. The following listing shows the array:

58 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 7.2: Arrays for items

The orders array will be added to the file order.model.ts. The following listing shows
the data in this array:

Chapter 7

59

Creating a Custom Component

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 7.3: Array for orders

60 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Building the Orders Component

The Orders component consists of two parts.

The first part is a table displaying the list of orders. Each row shows fields of the Order
class. The component must import the exported members of the file orders.data.ts.

Add a new file to the app folder and name it orders.component.ts. First, import the
required set of classes, interfaces, annotations and the arrays.

Listing 7.4: Import statements

The component class will consist of the following public fields and method:

•	 orders: An array storing the list of products imported from
the orders.data.ts file. This field will be used to show the list
of orders in the view

•	 itemsInSelectedOrder: An array to store the list of items of a
given order

•	 viewDetails: a method that takes an order and gets details of
the items in the order

The component class has a constructor, which assigns the list of orders imported to
the orders field in the class. Listing 7.5 shows the OrdersComponent class:

Listing 7.5: OrdersComponent class

Chapter 7

61

Creating a Custom Component

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

NOTE: This is not the best way to consume data in a com-
ponent. The above code can be made better using Services.
Services will be discussed in Chapter 27.

At this point, it is just an exported class. Let’s turn this to a component by adding
the Component decorator to it. The component has to be set with a selector and
a template. As this will be a larger template consisting of two tables (one for the
master list of orders, and another to list the set of items) it would be best to put the
template in a separate HTML file. Otherwise, the bulky inline HTML in the TypeScript
file will make it an unmaintainable mess. The file can be referred in the component
using the templateUrl property. Listing 7.6 shows the decorator that has to be added
to the above class:

Listing 7.6: Annotation of OrdersComponent

Building the Template

To reiterate, the template will have two tables displaying orders and items in an order.
The order table runs a loop over the orders array in the component and displays its
fields. It uses the following features of Angular 2:

•	 Interpolation: Interpolation is used to bind data from view
model on the view. In Angular 2, the view model for any
view is an instance of its component class. An interpolation
in Angular 2 can bind a field of a component, a property of
a field of a component, or even perform some simple JavaS-
cript operations like arithmetic operations. The following
is an example of using an interpolation displaying a name
inside an SPAn element:
{{name}}

•	 ngFor directive: ngFor is a directive built inside Angular 2
to support binding collections. The syntax of using ngFor is
shown in listing 7.6:

•	 <div *ngFor=”#item of items”>
•	 {{item.name}}
•	 </div>

62 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

•	 The asterisk in front of the directive indicates it is a structural
directive, which will manipulate the HTML template. The
hash symbol in front of the record variable item indicates it is
a local variable, and can be used in the template inside ngFor.

•	 ngIf directive: It is another structural directive used to add
or remove a block of HTML in a view, based on the value of
a condition.

•	 <div *ngIf=”showTheBlock”>Bingo! I am
visible!!!</div>

•	 The div shown in Listing 7.8 is displayed only when the value
of the field showTheBlock is set to a value that evaluates to
true.

•	 Event binding: Angular 2 doesn’t define new directives to
bind events in the template, thus any event can be bound
to a method in the component using a special syntax. Listing
7.9 shows an example of attaching a method to click event
of a button:

•	 <button (click)=”doSomething()”>Click
Here</button>

•	 The parentheses around click in the snippet indicate that
it is an event.

These features will be discussed with examples in the subsequent chapters. Listing 7.7
shows template of the component:

Chapter 7

63

Creating a Custom Component

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 7.7: Template of OrdersComponent

The component shows the list of orders in a table and (upon clicking the View Details
button on any row) the list of items in the second table. The second table is not
displayed unless the field itemsInSelectedOrder is populated with data.

The final step is to use this component in the main application component and
bootstrap the application using a module. The main component, OrdersAppCompo-
nent doesn’t contain any logic; it is used to load the component OrdersComponent.
Both OrdersComponent and OrdersAppComponent are registered in the module. The
OrdersAppComponent is used. Listing 7.8 shows this:

64 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 7.8: Contents of OrdersAppComponent and main.ts

Save all of the files, run the application, and open the application in a browser. The
display will be similar to the following:

Chapter 7

65

Creating a Custom Component

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Figure 7.1: Screenshot of the application in the browser

Conclusion

As this chapter demonstrates, some of the built-in features of Angular 2 can be used
with custom components to build data-bound interactive views. These features make
programmers more productive and also improve usability of applications. These
features will be used extensively in the upcoming chapters.

66 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

8
Multiple Components
Communication

COMPONENTS ARE BUILDING BLOCKS of a Angular 2 applications and can be
used to define Domain Specific Language (DSL). Meaning, you can create components
to fulfill the business needs of your application. Every significant, logical module of
an application can also be viewed as a combination of a set of related components.

Components work together to achieve a single goal.

These components need to communicate with each other to exchange information. To
do so, they need to have input and output points, which helps keep the components
lighter and smaller, increases readability, and eases debugging of the application.

Chapter 7 demonstrated a component with a list of items and their details. The com-
ponent was large, as the logic of displaying both the list and the details was stuffed
into a single component. A better approach is to split it into two components: one to
display the list of items, and another to display details of the selected component. The
list component will pass the ID of the item to be displayed to the details component.
The order being currently displayed in the details component will be highlighted in
the list. On closing the details component, it will inform the list component so that
the row won’t be highlighted anymore.

The sample of this chapter will be built using the development environment described
in Chapter 5. The following software and packages must be installed in the develop-
ment environment:

•	 Node.js: To start a web server to run the application and for
the Node.js Package Manager (npm)

•	 TypeScript compiler: To compile TypeScript
•	 TypeScript typings installer: To install TypeScript typings of

the libraries used in the application
•	 Angular 2 and its dependencies: The libraries required for the

project; to be installed in the project using npm

Chapter 8

67

Multiple Components Communication

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

•	 SystemJS: To load modules; o be installed in the project using
npm

•	 Koa.js: A Node.js framework to start a Node.js server

Create a new folder named MasterDetail-Interactive and copy the contents of the
setup project into it. Run the npm packages and make sure the sample runs.

Creating an Orders List and Order Details Components

Create two components: one to display the list of orders and one to display the details
of a particular order. The orders list component will use the details component as a
child component in it. Add a new file in the app folder and name it orderslist.component.
ts. Add the code shown in listing 8.1 to it:

Listing 8.1: Code of OrdersListComponent

The orders.data.ts file imported in Listing 8.1 is the file containing the model class for
Order, an interface representing the structure of an item, and a static list of Orders
with some items added to each of the Order. This data will be displayed in the view.
You may find this file in the source code of this chapter or in Chapter 7 .

The orders list component refers to a different file for the HTML template. To create
this file, add a new file in the app folder, and name it orderslist.component.html. Add
the following HTML markup to this file:

68 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 8.2: Template of OrdersListComponent in orderlist.component.html

This component loads and uses the order details component, but the details compo-
nent is not defined yet. Let’s define it now. Add a new file in the app folder and name
it orderdetails.component.ts. Add the following code to this file:

Listing 8.3: Code of OrderDetailsComponent

The HTML template of the order details component will only display the list of items
in a table. Add a new file to the app folder and name it orderdetails.component.html.
Add the following code to this file:

Chapter 8

69

Multiple Components Communication

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 8.4: Template of OrderDetailsComponent

Now that the OrdersListComponent is ready, let’s seen how it appears on the page.
Add a new file to the application to store the main application module and name it
ordersapp.component.ts. This component doesn’t contain any logic; it is used to load
the component OrdersListComponent on the page. The following listing shows the
code of this file:

Listing 8.5: Code of OrdersAppComponent

Both of the components created must be registered in a module by opening the file
main.ts and modifying the code of the file as in the following listing:

70 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 8.6: Code of module

Save all the files and run the application using the following command:

> npm run start

Open a browser and change the URL to http://localhost:3000. Running the page
displays the list of orders. The button “View Details” doesn’t perform an action, as
the action hasn’t been defined yet. The action will be added in the next section.

Figure 8.1: The orders table

Displaying Items in an Order

When a user clicks the “View Details” button on a row of the orders list, the selected
order has to be passed to the order details component, so a field must be added in the
OrderDetailsComponent class to accept the input. To do so, a field in the component

Chapter 8

71

Multiple Components Communication

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

class must be marked with the decorator Input on it. The decorator is defined in the
@angular/core package. Listing 8.5 shows how to import it:

The OrderDetailsComponent will accept an order object from the OrdersListComponent.
Add the field shown in listing 8.7 to the OrderDetailsComponent class.

Listing 8.7: Input property to accept order

This field has to be property-bound on the component’s element used in the list
component. Change the order-details tag in the orderslist.component.html file to have
this property. The following snippet shows the modified tag:

As the field order is property-bound, its value will change whenever the field selecte-
dOrder gets a new value in the orders list component. Whenever the value of the order
changes, the items added to the order will be retrieved using the getItemsOrdered
method on the order object. This can be implemented using a lifecycle method of the
component. The method ngOnChanges is called by the change detector whenever an
input field of the component is modified. This method can be added to any component
to listen to the changes which are happening to the input fields of the component.
Angular 2 has an interface, OnChanges, to make the implementation type safe. The
method can be implemented in the class without extending the component class
from the interface as well, but it is better to implement the interface as it provides
type safety for the method. Listing 8.8 demonstrates this method, which has to be
added to the OrderDetailsComponent class:

72 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 8.8: ngOnChange life cycle hook

Save all the files and run the application. Click the View Details button on the orders
list, randomly, to see the items of the order selected being displayed in the items list.

Closing the Items List

The user should be provided with an option to close the items list. Add a button in
the orderdetails.component.html to float on the top right corner of the section. It has
to be added as the first child under the root div element of the template. Listing 8.9
shows the markup of the button:

Listing 8.9: ngIf to show or hide details of an item

Next, the closeDetails method must be defined in the OrderDetailsComponent class
to send a message to the orders list component, and the OrdersListComponent
must set the selectedOrder to null when it receives this message. To achieve this,
the OrderDetailsComponent has to expose an event and it should be handled in the
OrdersListComponent. Two more objects (Output and EventEmitter) from the @angular/
core package have to be imported for this. The import statement in the file orderdetails.
component.ts changes to:

Chapter 8

73

Multiple Components Communication

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

An output property has to be defined in the OrderDetailsComponent class to emit the
event in the closeDetaills method. Listing 8.10 defines the property and the method:

Listing 8.10: Code for close event

The call to the emit method on the close event sends a notification to the consumer
of the event. Data can be passed to the consumer through the emit method. The
closeDetails method didn’t have to pass any data, so it emits the event with null value.

The property close is equivalent to any event on the HTML element. An event handler
can be bound to it on the component’s HTML tag. In the orderslist.component.html
file, change the order-details tag as shown in Listing 8.11:

Listing 8.11: order-details element with close event

Implementing the close method is the only pending thing to complete this function-
ality. Add the following method to the OrdersListComponent class.

Listing 8.12: Implementation of close event handler

Save all the files and run the sample. Now the items section should close upon clicking
the cross button. Though the functionality works, the user doesn’t yet know which
order is selected out of the list. Highlighting the selected row should help here. Change
the row element in the orderslist.component.html to the following:

Listing 8.13: Highlighting selected row

74 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The CSS class selected-order will be applied if the order displayed in the row is selected.
As it is property- bound, the class is removed from this row as soon as the value of
selectedOrder is changed. The following is the CSS class, add it to a style tag in the
file index.html:

Listing 8.14: Style of selected row

Now the user will get an indication of the row selected. The style applied to the row
element is removed via data binding when a different order is selected or when the
items are closed.

Figure 8.2: Preview of master-detail view

Conclusion

The components can communicate with each other without being aware of each
other’s presence. This helps in keeping the components isolated from each other,yet
achieves the functionality of the application. The ability to communicate among
different pieces also helps in keep the code pieces as lean as possible. Some additional
features of components will be discussed in Chapter 9.

75Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

9
Applying Templates and Styles to

Components

COMPONENTS REPRESENT INDIVIDUAL PIECES of an Angular 2 applica-
tion UI. Every component has a view that consists of a piece of HTML markup. The
amount of markup varies based on the size and the responsibilities carried out by
the component. The size of the template decides where a template has to be stored.

A visual design drives every software application, including Angular 2 applications. To
make the application look the way the design looks, the design of every component
must match its portion on the page. In CSS, it’s hard to scope the styles to the block
where they are applied. When the page is rendered, styles written for one portion of
the page may step into the styles of other elements and make those elements look odd.

Angular 2’s components have a solution to this problem.

Applying Template to a Component

Every component consists of two significant parts: a class, containing a view model
of the component, and the HTML template to be rendered in the component. The
size of the template could vary from a single statement of HTML to hundreds of lines.

Let’s examine a few scenarios to determine how to assign templates in these cases.

76 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Simple Templates

Consider a simple component displaying the name of a movie. The component
class will contain the name of the movie and the template will have an h2 element
displaying the name. As the component is not doing much, the template can be
assigned inline. The following snippet defines this component:

Listing 9.1: Code of MovieNameComponent:

Multiline Templates

If a component needs to do something other than displaying a single value, it will
need a template that takes more than one statement. If, for example, a component
has to show additional fields of a movie, although the template of this component
will span multiple statements, it is not big enough to be stored in a separate file. This
template can be assigned inline in the component. As it will be a multiline string, let’s
use ES6 string templates to define the template. The following snippet defines the
Movie component to display movie details:

Chapter 9

77

Applying Templates and Styles to Components

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 9.2: Code of MovieComponent

Bigger Components

Let’s make this component even bigger by displaying some additional fields of the
movie. The model class in Listing 9.3 shows the properties to be displayed in the view:

Listing 9.3: Code of Movie class

Though a component displaying these fields in the view will not have a large template,
it will still need an HTML template containing more than ten statements. It’s better to

78 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

put this template in a separate HTML file, to easily compose and edit a larger markup
when read as HTML by the editors. Let’s define a component for this.

Listing 9.4: Code of MovieDetailsComponent

The property templateUrl in the above component holds the URL of the file which
contains the HTML template to be rendered in the component. The component
handles the functionality (to toggle the display of additional details of the movie)
on the click of a button. Listing 9.5 shows the content of the template file:

Chapter 9

79

Applying Templates and Styles to Components

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 9.5: Template of MovieDetailsComponent

Styling Components

Applying CSS styles to an element at the nth level of an HTML document is a tiring
task as it is challenging to reach the right element using CSS selectors. Any mistake
in reaching the right element will not apply the style to the desired element and
sometimes the style may be applied to a non-targeted element. The CSS files of the
application will become bulky with many styles and complex CSS selectors. During
maintenance, these files can be very frustrating for someone reading the code for
the first time.

The components provide a way to define scoped styles, which can be applied to the
component alone without affecting the rest of the page. Simple styles can be defined
inside the components for a page where the component will be rendered.

Let’s apply some styles to the MovieDetailsComponent created in Listing 9.4. Add a new
property named styles to the component and assign a font family to the header tag.

Listing 9.6: Annotation of MovieDetailsComponent

80 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Save it and check the page; the h2 element in the component now has the font family
applied to it. To check if the style is in scope, you may add another h2 tag on the page
and check it. The h2 element outside the component won’t get this style.

Figure 9.1: Applying inline styles to a component

The styles property accepts an array of strings so the styles can be separated into
different strings, depending on: the target element, portion of the component where
it has to be applied, or based on any other pattern decided for the application.

When the amount of CSS to be applied to the component grows, the group of styles
can be moved into a separate file. Let’s apply additional styles to the MovieDetailsCom-
ponent to make it look better. Add a new file and name it moviedetails.component.css.
Note the consistent naming convention followed for all files related to the component.
Add the following styles to this component:

Listing 9.7: Styles of MovieDetailsComponent

Chapter 9

81

Applying Templates and Styles to Components

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

This file can be applied to the component as shown in Listing 9.8:

Listing 9.8: Annotation of MovieDetailsComponent

Save the files and run the application. The component looks similar to Figure 9.2:

Figure 9.2: Applying styles from an external file to a component

If a CSS style is defined in both global level and at the component level, then the
style at the component level takes precedence when the component is rendered.

Conclusion

Managing views of the components is important since the customer of the application
will interact with the application through the view. Angular 2 gives us a friendly inter-
face to manage the views effectively. The feature of scoped styling in the components
is a time saver and makes it easy to program the styles according to a given design.

82 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

10
Directive Overview

ANGULAR 2 IS CREATED with Separation Of Concerns (SoC) and testability in
mind. One aspect where front- end applications need distinct sections (as well as
durable communication between the sections) is between the view and the model.
Components and directives in Angular 2 solve this problem well.

As discussed in Chapters 6 through 9, components are used to define custom elements.
Directives, on the other hand, are used to add new functionalities to the existing HTML
elements and the components.

What are Directives?

Directives are used to extend HTML, teaching new tricks to HTML elements without
disturbing their actual structure and implementation. They are quite useful in scenarios
where the application wants certain elements to behave in a given way, depending
on a value in the model.

Like components, directives make the HTML template of the application readable.
Just by reading the HTML markup of an element on the page, one understands that
the element will have some additional action when it gets rendered.

As the core logic of the directives is defined in JavaScript (or, TypeScript), it can be
unit tested like any other block in the application. Angular 2 doesn’t let a directive
access its DOM element directly, rather it provides an abstraction to work with the
element. This makes the directive usable across multiple platforms.

Chapter 10

83

Directive Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

There are two types of directives in Angular 2:

•	 Attribute Directive: The attribute directives perform their
task on the element on which they are applied. They get a
reference of the target element and can perform tasks like
applying styles, handling events, and similar operations.

•	 Structural Directives: The structural directives manipulate the
HTML template of the element on which they are applied.
They access the template and can perform operations like
adding or removing the template, cloning the template
multiple times, and anything that needs to be performed
on the template as a whole.

Exploring Built-in Attribute Directives

Let’s see how some of the built-in attribute directives work in Angular 2. Structural
directives will be discussed in chapters 12 and 14.

ngStyle

The ngStyle directive is used to bind an element with dynamic inline styles. It accepts
the data in the form of a JavaScript object literal, where the keys represent the CSS
properties, and the values corresponding to every key are assigned to that CSS
property. The values can be assigned using fields in the component’s class.

Let’s build a component and use the ngStyle directive in it to see how it works. The
component will have a simple div and a button. It will have a set of five styles assigned
to an array and style of the div will be changed to one of these when the button is
clicked. The following snippet shows the code of the component:

84 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 10.1: Component demonstrating ngStyle directive

Chapter 10

85

Directive Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

In the above snippet, notice that a model class named StyleModel is created to
represent structure of the style object, and to avoid usage of the generic any type in
TypeScript. The div element in the template is applied with the first style in the array
styles. When the button is clicked, the next color from the array styles is picked, and
assigned to the div.

Note the way the value is assigned to the directive.

[ngStyle]="{'color': style.color, 'font-family': style.fontFamily}

The square brackets around the directive indicate that it is property bound. The
value assigned to the directive is similar to the value assigned to the style attribute
of HTML in general. Values assigned to the properties are inferred from the style field
in the component class. Once value of the object style changes, style of the element
is updated automatically by property binding.

ngClass

The ngClass directive adds or removes a CSS class on an element depending on a
condition. The condition can be based on the value of a field in the component’s class.
Whenever the value of the field changes, the CSS class of the element also changes.
There are multiple ways to use the ngClass directive. This section demonstrates a
couple of them.

USING THE NGCLASS DIRECTIVE ON AN EVENT

Let’s build a component to see how ngClass behaves. The component will have just
one button whose CSS class toggles whenever the button is clicked. The component’s
style property will have two styles assigned to it; one will be applied to the element
when the component loads and the other when the value of the class changes (to
the other class) on the click of the button.

The following snippet shows code of the component:

86 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 10.2: Component demonstrating ngClass directive

Here, the directive ngClass is assigned with the name of a field, so it has the value
assigned to the field. Whenever the button is clicked, value of the field buttonClass
changes and the button gets a new style applied.

USING THE NGCLASS DIRECTIVE ON A BOOLEAN FIELD

Another way to use ngClass is to apply or not apply a CSS style based on a Boolean
field. This requires a slightly different syntax. The following snippet shows the syntax:

Chapter 10

87

Directive Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Let’s add a span element to the above component and apply this style to it.

The value of the Boolean property isItalic must be toggled to see if it works. Modify the
changeStyle method in the class to toggle this value whenever the button is clicked.

Conclusion

Directives provide a way to tweak the view dynamically with very few lines of code.
Angular 2 has many other directives (for forms, validation, localization and routing)
which will be explained in Chapters 11 through 14.

88 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

11
Basic Custom Attribute Directive

CHAPTER 10 EXPLORED DIRECTIVES, the importance of directives, and it
demonstrated two of the built-in directives in Angular 2. As discussed, Directives
extend HTML elements and add additional actions to the elements without modifying
their originality. This approach is quite powerful.

This chapter will demonstrate how to create a basic directive and use it.

While writing a full blown business application using Angular 2, sometimes we need
the control of adding a business-specific meaning to the application. The dynamic
nature of components and directives in Angular 2 provide us with this option. Direc-
tives can be used to add behavior such as a particular style property according to a
value in the model, handling of events, and any additional behavior on the element
that enhances its functionality.

Building a Custom Attribute Directive

Like a component, a directive is a TypeScript class with an annotation. The following
snippet shows syntax of creating a directive:

Listing 11.1: Syntax of creating a directive

The directive must be applied with the Directive annotation, which defines the selector
of the directive. It can also provide hooks to interact with the containing component,
which will be discussed later in this chapter. The reference of the element on which the

Chapter 11

89

Basic Custom Attribute Directive

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

directive is applied must be injected into the constructor of the directive. ElementRef
is the type of the element reference (TypeScript), which is defined in the core package
of Angular 2.

Writing a Basic Directive

Let’s write a basic directive to understand the process. The directive will make the
following changes to the applied element:

•	 Sets a title to the element
•	 Changes font weight of the element to bold

Listing 11.2 shows the definition of this directive:

Listing 11.2: Code of ApplyStyleDirective

This directive can be used on any element on the page. Before using it, the directive has
to be declared either in the component or in the module. The following component
uses this directive:

Listing 11.3: Code of AppComponent

90 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The directives can accept properties (which can be assigned with the value of a field
in the component) by introducing an input property to the directive class. It is similar
to the input properties discussed in Chapter 8. As an example, modify the ApplySty-
leDirective to accept a property. The following snippet shows the modified directive:

Listing 11.4: ApplyStyleDirective with properties

The directive class includes a setter property fontStyle, which is invoked whenever the
value of the bound property changes. This property is decorated with the Input deco-
rator. The incoming value is assigned to the fontStyle property of style of the element.
The component using this directive provides this value. Whenever the component
changes the value, the setter property is called, and the value is updated. Let’s modify
the AppComponent to have a field for font style and change its value using an event.
Listing 11.5 snippet shows the modified code of AppComponent:

Chapter 11

91

Basic Custom Attribute Directive

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 11.5: AppComponent with property fontStyle

A module needs to be created to hold the directive and the component created in
Listing 11.5, and the application has to be bootstrapped using the module. Listing 11.6
shows the module.

Listing 11.6: AppModule registering AppComponent and ApplyStyleDirective

92 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Run the example and click the Toggle Style Button. You should see the following:

Figure 11.1: Preview of the page

Conclusion

Directives can be used to give minor, yet important touches to the element they are
applied on. This chapter demonstrated a simple custom directive. Chapter 12 will
discuss how to create a more interactive directive.

93Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

12
Advanced Custom Attribute

Directives

CHAPTERS 10 AND 11 demonstrated what directives are, explained the impor-
tance of directives, used some built-in directives in Angular 2, and also showed a
demo of a simple custom directive. As discussed in these chapters, directives extend
HTML elements and add actions to these elements, without modifying their originality.

This chapter will build another custom directive to explore some additional features
of custom directives.

Directive to Highlight an Element

This section will create a directive to highlight an element when it is clicked upon.
The component consuming this directive will control the color to be applied in the
background when the element is highlighted.

First, we need a component with a template to host the directive. Listing 12.1 shows
the component and displays a list of to-do items in div elements. Each of these divs
will be applied with the directive to be built. Snippet 12.1 defines this component:

94 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 12.1: Code of the file learningdirectives.component.ts

The component has a property, color, that holds the value of the color to be applied to
highlight the to-do items. This property is passed to the directive. Chapter 8 demon-
strated how to make two components communicate with each other using the Input
and Output decorators. The same principles can be used to establish communication
between components and directives as well. The directive will have an Input field to
accept the value of color from the containing component.

Like components, directives have lifecycle hooks. The color received from the compo-
nent must be used in the directive in the ngOnInit lifecycle hook because this value
wouldn’t have been assigned when the directive was constructed.

Snippet 12.2 defines the directive:

Chapter 12

95

Advanced Custom Attribute Directives

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 12.2: Code of the file highlightselected.directive.ts

In the snippet 12.2,

•	 The input property color has the value of the property
assigned to the attribute named highlightSelected, which
is the directive itself.

•	 The constructor gets the reference of the DOM element on
which the directive is applied. Unlike Angular 1, where the
DOM elements are wrapped inside jqlite, Angular 2 provides
a plain DOM object.

•	 The method ngOnInit sets the background color of the
element using the color received in the input parameter.

To use this directive in the component, the directive has to be declared in the declara-
tions section of the module. Now apply the directive on the div element. Listing 12.3
shows the definition of the module:

96 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 12.3: Module declaring the component and directive in the file main.ts

Upon running the application, the component will have the list of to-do items with
the background color.

Figure 12.1: To-do items with background color

Highlighting all of these entries by default isn’t ideal for the user. Let’s modify this
behavior to highlight an entry when the user clicks on it.

Highlighting on Click

To highlight divs on click, the Click event of the div element has to be handled. The
previous chapters demonstrated this using a method in the component class. Now that
the directive HighlightSelectedDirective is responsible to highlight the elements, this
directive should be modified to follow the user’s action. The directive can listen to the
events of its container elements using the host property on the Directive annotation.
The syntax of using this property is shown in listing 12.4:

Chapter 12

97

Advanced Custom Attribute Directives

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 12.4: Directive annotation with host property

The method selected has to be defined in the directive class; it will toggle the back-
ground color of the element. The ternary operator ? helps achieve this in a single
statement.

Listing 12.5: Method assigning style in the directive

No changes are required in the component. Now if you run the application, you
should be able to see the background color of the to-do items toggling when you
click them. Run the application and click on the to-do items to see the background
color changing.

Figure 12.2: Output of the final code

Conclusion

As seen from the examples in this chapter, directives can be used to enhance the
behavior of existing HTML elements according to the application’s requirements. As
they are not coupled to the type of element they are applied on, they are highly
reusable. Upcoming chapters will define other types of directives with examples.

98 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

13
Structural Directives

DIRECTIVES CAN BE USED to enhance the behavior of HTML; they are extremely
useful in adding small, albeit important touches to the application. Directives can also
be used to manipulate the template inside the element. Such directives are called
structural directives.

Structural directives get access to the template of the element on which they are
applied. They can control the way the template is displayed in the element, add the
template, remove the template, and repeat this operation several times.

This chapter will demonstrate some of Angular 2’s built in structural directives.

Conditionally Rendering Elements Using ngIf

One of the common use cases of any application is to show or hide the DOM elements
on the page based on a condition. This can be achieved using one of the following
approaches:

•	 Hide the UI element from the page, and display it when
required

•	 Completely remove the element, and add it back later

Of these two options, the second one is more difficult as it involves removing and
adding elements to the page, which may include Angular 2 components and directives.
Angular 2 makes it easy by providing the structural directive ngIf. The directive ngIf
can be applied on any element or component in a page, and the target is added or
removed from the page based on a condition. This condition can be based on the
value of a field in the component class or the return value of a method.

Snippet 13.1 shows a component using ngIf:

Chapter 13

99

Structural Directives

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 13.1: Component using ngIf in the file app.component.ts

The listing 13.2 shows the Employee class to be added to a new file app.model.ts:

Listing 13.2: Employee class in app.model.ts

In Listing 13.1, the content inside the div, containing details of the element, is toggled
based on the value of showDetails. If you inspect the content of the page, you will see
that the div element is added to the page when value of the variable showDetails is set
to true. Similarly, the content is removed from the page when the value is set to false.

Notice the asterisk (*) symbol in front of the directive ngIf, indicating that it is a struc-
tural directive and Angular 2 processes it differently than attribute directives. The
directive gets a reference of the template to be rendered inside the target element,
and so it can manipulate the template before rendering it on the UI.

100 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Repeating a Template Using ngFor

Typical web applications can receive collections from the server to display to the
user. The application repeats the content for the length of the collection. Angular 2
provides the structural directive ngFor to repeat the template. Suppose there is a list
of items to be displayed in a component as shown in Listing 13.3. The component
AppComponent has to be modified to add this list.

Listing 13.3: Modified app.component.ts

Notice that the template of the component has been moved to a separate file app.
component.html, as the template file will be updated with some more html later.

The listing 13.4 shows the Item class to be added to the file app.model.ts:

Listing 13.4: Table with ngFor

Chapter 13

101

Structural Directives

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Now display this list in a table. The rows of the table will have the same template
and need to be repeated for every entry in the collection. This can be done using
the ngFor directive as shown in the snippet below, this snippet has to be added to
the file app.component.html:

Listing 13.5: Table with ngFor

Notice the way the directive ngFor is used in this snippet. As a structural directive, it
is prefixed with an asterisk(*). The value assigned to the directive is similar to the way
a for-of loop is written in ES6. The let keyword is used to declare the local variable
to hold the value of the current record and the of keyword is used before the list of
items to be iterated. The variable remains private to the portion of the template where
ngFor is used; it is not available anywhere outside the ngFor directive.

Conclusion

As discussed, structural directives in Angular 2 are used when the template in the
element must behave based on the data available. Angular 2 has several more built-in
structural directives which can be found in its official documentation. It is possible
to build your own structural directives, which will be explored in the next chapter.

102 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

14
Custom Structural Directives

CHAPTERS 10 TO 13 explained what directives are, different types of directives,
using them, and creating some functional directives.

This chapter will teach you how to create custom structural directives.

As seen in Chapter 13, some of the built-in structural directives work with the tem-
plate in the element and control the way the template is presented to the users. An
application may challenge the developers to control the behavior of the templates,
depending upon certain conditions. In such cases, a structural directive will be optimal.

This chapter will build a simple custom structural directive to explain the process.

Building a showWhenEven Directive

Let’s build a custom structural directive that shows the content, when the assigned
model property is an even number, and removes the content, when the value is an
odd number.

The signature of the directive will be the same as the directives discussed in the
previous chapters. The only difference is in the dependenciesTemplateRef and View-
ContainerRef injected in the directive’s constructor. The TemplateRef represents the
template inside the element. The injected object would contain a property holding the
DOM object inside the element on which the directive is applied. The ViewContainerRef
is a container where a view can be attached. It gets the reference of the DOM content
inside the element containing the structural directive. Both of these types are defined
in the @angular/core package. Snippet 14.1 shows the directive with its constructor:

Chapter 14

103

Custom Structural Directives

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 14.1: Skeleton of custom structural directive, to be added to file showwheneven.directive.ts

The directive accepts a numeric field from the component and, based on the value of
the input, content will be added or removed. The TemplateRef and ViewContainerRef
objects injected into the directive will aide in this task. There must be a setter property
in the directive to update the view whenever the value of the input changes. The
name of the setter property is going to be same as the selector of the directive.
Assigning the same name to the setter property allows the consumer to assign the
input to the directive itself, thus makes the consumption easier. Listing 14.2 shows
the setter property:

Listing 14.2: Setter property in custom structural directive, to be added
to the class in the file showwheneven.directive.ts

As the value of the property comes from the component, it must be marked with
the annotation Input. Listing 14.2 checks if the value set to the property is even and,
if it passes, it adds the content to the DOM using the createEmbeddedView method
on the viewContainer. Otherwise, it calls the clear method on the viewContainer to
remove the content inside the directive element.

Now define a component to use this directive: the component will have a numeric
field and a method to increment value of this field. This method will be called from
the click event of a button. The content inside the structural directive will be added
to the view on alternate clicks of the button. Snippet 14.3 shows the component
using the directive:

104 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 14.3: Component using the custom structural directive

Figure 14.1: Custom structural directive in action

Conclusion

Angular 2 provides us with different directives for different needs, which are easy to
create, and make the application look more declarative. Structural directives make
the page extremely dynamic and interactive by conditionally displaying the content.
Now that you’ve learned how to create custom structural directives, use them to make
your applications even better!

105Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

15
Getting Started with Databinding

DATABINDING IS ONE OF the most appreciated features of AngularJS as it creates
a connection between the application’s UI and the data/business logic/model. This
enables automatic synchronization of data between the model and the view. When
the data changes, the UI elements bound to that data change automatically. Similarly,
when the data in the UI elements changes, the underlying model is updated to reflect
the changes.

Data binding eliminates writing thousands of lines of code, and the need to write
tedious, boilerplate code around DOM events.

In Angular 2, the Databinding provides the following features:

•	 One-Way Databinding or Interpolation
•	 Databinding with UI Element Properties
•	 Databinding with UI Element Events

The following diagram gives an overview of Angular 2 Databinding

Figure 15.1: Angular 2 DataBinding

106 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Typically in Line-Of-Business (LOB) applications, data received from the server is
exposed to the UI elements on a page. The received data is stored in the Data-Model
on the client-side.

NOTE: Two-Way databinding is not explicitly available in
Angular 2. It can be implemented using a combination of
Property and Event Bindings.

What is Data-Model and how is it used in Databinding?

As discussed in the previous chapters, an Angular 2 application is a combination of
several components. Every component has its own data model, which is an object of
the component’s class. This class contains public properties (or fields) and methods
(or function/operations).

Data-Model properties are used to expose data to the UI elements; the View can use
these fields for DataBinding. One-Way databinding is used to display data on UI, but
changes to the data in UI element will not update the data-model property. In case
of Two-Way Databinding, when the UI element changes its value, the value of the
property bound with it will be updated with the new values from the UI element. We
can bind methods from the Data-Model with the events exposed from the UI element.

How does DataBinding benefit our application?

The advantage of DataBinding is that it eliminates the UI level event handling code
(remember document.getElementById(‘btn’).addEventListener in
JavaScript). Two-Way binding helps automatically update the UI when the DataModel
properties are updated from the data received from server. This eliminates the code
for explicitly updating values of UI elements. The UI will automatically generate the
DOM, based on the data collection received from an external server.

Getting Started with the DataBinding

This chapter will implement a sample DataBinding application using Visual Studio
Code (VS Code). Please refer to Chapter 5 to set up the development environment.

Chapter 15

107

Getting Started with Databinding

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

CREATING PROJECT AND INSTALLING REQUIRED PACKAGES

Create a folder on your drive with the name NG2_Databinding to be used as an
application folder. Open VS Code and using File > Open Folder option, navigate to
the application folder and open it. Please follow the steps mentioned in NG Developer
Environment chapter to install necessary dependencies for the current section.

Creating Components for DataModel

In the app folder, add a new file of the name employee.component.ts. In this file,
define the component EmployeeComponent.

The Angular 2 core modules are imported using the following statement:

Listing 15.1: Importing the Component

The new component is created with the selector as emp-data, which will be used
as an HTML tag in the View. Listing 15-2 shows the decorator to be applied on the
component:

Listing 15.2: The selector for defining HTML Tag

The EmployeeComponent class is defined with public properties in it for Employees.

108 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 15.3: The EmployeeComponent class

The EmployeeComponent has the default value for EmpName as ‘Mahesh’. The
change() function is responsible for updating the EmpName value.

The entire EmployeeComponent is as shown in Listing 15-4:

Chapter 15

109

Getting Started with Databinding

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 15.4: The complete code

Once the component is created, it needs to be loaded using Angular 2’s bootstrap
function. This function is present in the module @angular/platform-browser-dynamic
path.

In the main.ts file of the app folder, make sure that the modules shown in listing 15-5
are imported .

Listing 15.5: Importing modules for bootstrapping

Now import the EmployeeComponent:

110 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 15.6: Importing EmployeeComponent

Next the component EmployeeComponent has to be declared in the module as shown
in Listing 15.7:

Listing 15.7: Defining NgModule

The entire code in main.ts is shown in Listing 15-8:

Listing 15.8: The Complete code of main.ts

Once the code is complete, compile the code. Refer to Chapter 5—Angular Develop-
ment Environment chapter in case you are not familiar with the process.

Now the application is configured with the required packages and the data needed
has been provided to the component. Chapters 17 through 20 will use this data to
explore different features of data binding.

111Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

16
Angular 2 DataBinding Interpolation

IN CHAPTER 15, WE took an overview of Databinding and created a project with
the necessary packages. This chapter will use the Data-Model Component named
EmployeeComponent and the bootstrap code in main.ts for implementing Inter-
polation.

Angular 2 Interpolation (one of the biggest features of the framework) is imple-
mented using double-curly braces ‘{{}}’. The Interpolation syntax is just an alternate
syntax for property binding. When the Data-Model component’s property is
changed, then the UI element’s property also gets changed; however, changes
from the UI element do not update the Data-Model property. In such cases,
Interpolation is used to update the UI element when any changes occur in the
component’s properties.

In the application folder of the previous chapter, add an HTML file and name it as
Employee.html. In the index.html, make sure that the following code is present:

112 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 16.1: The index.html

Listing 16.1 contains the required references for Angular 2. Make sure that the script
references are in the same order as in Listing 16-1 (especially if you are running the
app in Internet Explorer). The module of the application, which is main, is loaded
first. The emp-data component starts the application. This component is defined in
employee.component.ts file.

Modify the employee.component.ts file. Set the templateUrl property of Component
to employee.html as shown in Listing 16-2.

Listing 16.2: Adding the templateUrl property

In employee.html, add the following markup.

Chapter 16

113

Angular 2 DataBinding Interpolation

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing: 16-3: The code employee.html

The html markup in Listing 16-3 contains the element with the Component’s
property empName set in braces. Angular 2 will replace this interpolation with the
property value from the Component. The expression in the curly braces is known as
template expression. This is evaluated by Angular, and converted into a string. The
markup in Listing 16-3 also contains mathematical expression which will be evaluated
to its result.

Note the code also uses event binding (click)="change()" which will be
discussed in detail in Chapter 18—Event binding chapter.

Running the Application

Right-click on index.html and select option Open in Command Prompt, to open
the command prompt.

On this command prompt, run the following command:-

Listing 16.6: Command to run the application

npm run start

Open the browser and enter the following URL

114 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

http://localhost:3000

This loads the browser with the UI as shown in Figure 16-1.

Figure 16.1: The First-Time running of the application

The span shows the value of the empName property as ‘Mahesh’. Click on the Save
button and the empName property will be updated in the Data-Model to Mahesh
Sabnis. The end result is shown in Figure 16-2:

Figure 16.2: Result after clicking the Save button

Conclusion

Interpolation is a special syntax that allows for a richer template HTML. Angular 2
evaluates the template expression in the interpolation braces, converts it into a string,
and assigns the result to a HTML element or directive property.

115Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

17
Angular 2 Property Binding

CHAPTER 15 PROVIDED AN overview of Databinding and demonstrated how
to create a Data-Model. Chapter 16 showed Interpolation in action. This chapter will
discuss about Property Binding in Angular 2.

A View consists of several HTML UI elements with various property attributes which
can control the behavior of the UI Element. In Angular 2, Property Binding can be
used to set the values of these attributes. In the case of Property Binding, we can
bind attributes like href, style, etc. using values of properties from the Data-Model,
especially in scenarios that do not explicitly want any value updates from View to
Data-Model, and back. This also means that Property Binding is a type of One-Way
data binding.

To demonstrate Property Binding, this chapter uses the same Data-Model from
Chapter 15.

Open main.ts and for property binding to work, import the FormsModule from the
@angular/forms package. The following listing shows the code for importing the
FormsModule:

Listing 17.1

import { FormsModule } from '@angular/forms';

Open employee.component:

Listing 17.2

In the constructor, set values for the properties as shown in Listing 17-2.

116 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 17.3

Here the values are set for helpText and helpLink, which will be used for
property binding with HTML.

In the app folder of the project, add a new html file with the name taxhelper.html.
This Html page will be used to display tax information for the salary entered for the
employee.

Listing 17.4: The Markup in taxhelper.html

Chapter 17

117

Angular 2 Property Binding

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The HTML page in Listing 17-4 will show the Tax for Salary ranges.

Modify the employee.html by adding a text Box for binding the property salary and a
hyperlink for binding the helpLink properties declared in the EmployeeComponent
class.

118 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 17.5: The style in employee.html

In Listing 17-4, the <div> tag is bound to ngStyle for setting the CSS style for the text
in it. The href property of the hyperlink element is bound to the helpLink property
using property binding syntax [href].

NOTE: There is another syntax that can be used called
bind-href <a bind-href="helpLink" target="_blank">{{help-
Text}} but we will use the bracket [] syntax for the rest
of this book.

The hyperlink will be visible if the salary entered is more than zero. Note that the code
in Listing 17-5 uses ngModel directive which is a feature of the Two-Way binding,
and will be discussed in a forthcoming chapter.

Chapter 17

119

Angular 2 Property Binding

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

RUNNING THE APPLICATION

Right-click on index.html and select Open in Command Prompt, enter the following
command in the command prompt:

Listing 17.6: Command to run application

npm run start

This command will show index.html in the browser as shown in Figure 17-1

Figure 17.1: The first running the application

Enter EmpNo, EmpName and Salary. If the Salary is greater than 0, the Link will be
visible as shown in Figure 17-2.

Figure 17.2: The property binding execution

Once the link is visible, click on it and the page TaxHelper.html will be opened in a
separate browser tab.

The href property of the HTML Hyperlink element has been successfully bound with
the helpLink property from the Data-Model.

Conclusion

Property Binding can be used in cases of binding attributes of Html elements, in order
to control its behavior during runtime.

120 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

18
Angular 2 Event Binding

CHAPTERS 15 THROUGH 17 focused on various features of Angular 2 Datab-
inding. Databinding is one of the most important features of Angular 2 and is heavily
used in Line-of-Business (LOB) applications. The Data-Model properties are bound
with the HTML UI Elements for data display and updates.

The Data-Model may have functions containing code for business rules and for pro-
cessing the property values. These functions are executed using the events of HTML
elements e.g. Button Click, TextBox Blur, keypress, keyup etc. These events execute
a function defined in the component as a response to the action the end-user takes
on the UI element, e.g. clicking on the button or pressing a key on the keyboard

The event-binding features in Angular 2 can be used to bind the functions defined in
the Data-Model with the events exposed by HTML elements. The event uses paren-
thesis () notation in HTML. The syntax for event binding is shown in Listing 18-1:

Listing 18.1: Adding event binding in employee.html

There are two syntaxes to add event binding. The event of the HTML element is enclosed
in the parentheses with the function name passed to it. For example, in the above
listing, the click event of the button is bound to the save() function. Alternatively,
we can also use the ‘on-’ prefix for the click event, as used for binding the clear()
function in the Clear button.

The Implementation

This chapter will modify the Data-Model used in Chapter 17 by creating a separate
Employee class with all of the properties in it.

Chapter 18

121

Angular 2 Event Binding

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

In the project, add a new file of the employee.model.ts. Create an Employee class
in this file as shown in listing 18-2.

Listing 18.2: The Employee model class

The class contains constructor with public properties for storing Employee information.

Since a separate Employee class now exists, create an instance of the Employee class
in the EmployeeComponent class. Modify the employee.component.ts file as shown
in the listing 18-3.

Listing 18.3: Importing Employee Model in employee.component.ts

This statement will use Employee class as a type to declare the Employee property in
the EmployeeComponent class in employee.component.ts, as shown in listing 18-4.

Listing 18.4: Declaring instance of Employee model class in EmployeeComponent class

As shown in Listing 18.4, the emp property and employees array of type employee
have been declared.

Now instantiate the emp object and employees array in the constructor as shown
in listing 18.5:

Listing 18.5: Initializing the Employee Model object and Array declaration

122 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The emp instance will set values for public properties of the Employee class.

Add a function in the EmployeeComponent class to reset the Employee instance.

Listing 18.6: Clearing the Employee object

Create a function to push the Employee instance in the employees array.

Listing 18.7: Adding the Employee object in Employees array and clearing the Employee object

Now add a function in the EmployeeComponent class to set the designation of the
Employee based on the Salary entered for the Employee.

Listing 18.8: Setting value of the designation based on salary

The entire code of the employee.component.ts is as shown in listing 18.9.

Chapter 18

123

Angular 2 Event Binding

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 18.9: The complete code of employee.component.ts

124 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Similar to the click event, other events like ‘keyup’, ‘keupress’etc. can be used for binding
and to execute functionality defined in the component using the following syntax.

Modify the Employee.html to use the event binding as shown in Listing 18.10

Listing 18.10: The employee.html code

Chapter 18

125

Angular 2 Event Binding

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

In listing 18.10, the Salary Textbox is bound with the setDesignation() function using
the blur event of the Textbox. The Clear and Save buttons are bound with the clear
and save functions using a click event. A table is used to display all the employees
saved in the Employees array, when the Save button is clicked.

Running the application

In Visual Studio Code, right-click on index.html and select Open in Command Prompt.
Run the following command from the command prompt

Listing 18.11: The Command to execute the application

npm run start

This will open the browser with index.html in it, as shown in Figure 18.1

Figure 18.1: Loading the application

Enter data for the Employee. On entering the Salary, the Tax will be calculated based
on the Salary entered. Focus the cursor out of the Salary TextBox, and the Designation
TextBox will show the respective Designation as seen in Figure 18.2:

Figure 18.2: Generating Designation based on the Salary

126 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Enter the value for the DeptName and click on the Save button. The table at the
bottom of the page will display the corresponding Employee entered. See Figure 18.3.

Figure 18.3: Showing inserted data in table

Conclusion

Event Binding is used to perform an action in the component when an event like click,
focus, or blur occurs in the view. This chapter demonstrated Angular 2's new Event
Binding syntax with TypeScript and how to bind to DOM events.

127Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

19
Angular 2: Two-Way Databinding

CHAPTERS 15 AND 16 provided an overview of Databinding and Interpolation.
This Chapter will use the same data model created in Chapter 15 to implement Two-
Way databinding in Angular 2.

Two-Way Databinding is one of the most useful feature in a Line-of-Business (LOB)
Application. This feature reduces the need for writing additional code for updating
the UI every time the Data-Model property value changes, and vice versa. Angular 2
does not support two-way binding directly. However, two-way binding in Angular 2
can be derived using property and event bindings.

Two-Way Databinding in Angular 2 is implemented using the ngModel directive and
using the canonical prefix as bindon-ngModel.

THE IMPLEMENTATION

Open the project created in Chapter 16—Interpolation using Visual Studio Code. To
implement Two-Way DataBinding in Angular 2, install the @angular/forms package.
Open the package.json file and add the @angular/forms package in the dependencies
as shown in listing 19.1:

Listing 19.1: package.json

"@angular/common": "2.0.0",

"@angular/compiler": "2.0.0",

"@angular/core": "2.0.0",

"@angular/http": "2.0.0",

"@angular/forms":"2.0.0",

"@angular/platform-browser": "2.0.0",

"@angular/platform-browser-dynamic": "2.0.0",

128 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Change the employee.html file to the one in listing 19.2:

Listing 19.2: employee.html

Chapter 19

129

Angular 2: Two-Way Databinding

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Here, Two-Way Databinding is implemented using the [(ngModel)] directive set for
the <input> element, as well as the attribute in canonical prefix bindon-ngModel. The
[(ngModel)] directive can be used for elements like TextBox, ListBox, etc. It works by
first accepting the value of the property to bind and then emitting an event when
value of the model is updated in the view. This event is responsible to update the
property of the data model. In listing 19-1, both input elements are bound with the
empName property of the component EmployeeComponent.

Modify the main.ts file to import FormsModule, which will be used for DataBinding.
Modify the main.ts as shown in Listing 19.3

Listing 19.3: The main.ts modification to import Forms module

Listing 19.4: The main.ts modification to import FormsModule in @NgModule

The FormsModule provides an access to the form ngModel which is used for Datab-
inding.

RUNNING THE APPLICATION

Right-click on Index.html > Open in Command Prompt. Run the following command
from the Command Prompt.

Listing 19.5

npm run start

This will display the HTML page shown in Figure 19-1

130 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Figure 19.1: Loading the page in browser

Enter the EmpName in the first EmpName TextBox, and Salary in the first Salary TextBox.
The second Textbox for EmpName and Salary will show the same value as in the first
TextBox. See Figure 19-2:

Figure 19.2: Updating EmpName and Salary (First TextBox EmpName and Salary)

Now enter some data in the second TextBox for both EmpName and Salary. This will
update the respective TextBoxes as shown in Figure 19-3:

Figure 19.3: Updating EmpName and Salary (Second TextBox EmpName and Salary)

Chapter 19

131

Angular 2: Two-Way Databinding

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

HOW DOES IT WORK?

Angular 2 provides the ngModel directive and the ngModel input property sets the
element’s value property. The ngModel detects the change event on the input ele-
ment and updates the model property bound to the element. The ngModelChange
output property also listens to any changes to the value property of the UI element.

Conclusion

Two-way data binding combines the input and output binding into a single notation
using the ngModel directive.

132 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

20
Working with Forms

THIS CHAPTER PROVIDES A basics understanding of Angular 2 forms. In Angular 2
applications (and, hence, in Web Applications), the Form plays a crucial role while
developing a UI, as forms provide a way for the users to interact with the application.
This chapter explains how to create and use Forms. Before implementing the appli-
cation, let’s go over some basics of an Angular 2 Form.

Angular 2 introduces the ngForm directive. This directive supplements the form
element with features like form submit action, which is used to hold the controls in
the form having ngModel directive applied to them. The name attribute is used so
that their properties can be monitored for performing validations.

Angular 2 internally creates FormControls. This corresponds to the name attribute we
set for the input element. The name attribute represents the relationship between an
element in the html document, with its container form tag. The <form> tag manages
the control’s state, e.g. during validation using its name attribute.

One more important point to note is that Angular 2 uses ngModel with ngModelOp-
tions to link a reference to the model’s property. This is used to indicate that a form
control is standalone, which allows developers to distinguish that some controls
shouldn't be registered with the parent form if necessary. ngForm provides onSub-
mit() function which, outputs ngSubmit object. This object is used to submit form
values.

The ngForm directive gets applied to every <form> element present in the template
of an Angular 2 component. To implement Angular 2 form, FormsModule is needed.
This module class is provided in the @angular/core package. This module needs to
be imported in the main.ts file.

The Implementation

To implement the code for Angular 2 forms, this chapter uses the code from Chapter 18
and modifies the EmployeeComponent class in employee.component.ts file.

Chapter 20

133

Working with Forms

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The class declares a new Boolean property to check if the form is submitted in the
class as shown in Listing 20-1.

Listing 20.1: The Boolean flag for form submission

This property sets the state of UI elements like <div> and <table> to make them
visible or hidden.

This property is initialized in the constructor of the EmployeeComponent constructor
as shown in Listing 20.2.

Listing 20.2: The default value for flag

The save() function is modified as shown in Listing 2.03

Listing 20.3: save() function used in form submission

The above code sets the value for the frmSubmitted property to true. The save()
function is accessed using the submit button.

Add the following function in the class to load the form with empty input elements:

Listing 20.4: Load form with empty elements

Listing 20.5 shows the complete code for the employee.component.ts file:

134 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 20.5: The complete code

Chapter 20

135

Working with Forms

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The employee.html file is modified by adding the <form> tag enclosing the table
containing employee information <input> fields. The code uses the ngSubmit event
object to bind the save() function to the <form>. The <form> tag is enclosed in <div>
tag so that it can show/hide the table with <input> elements. The hidden property of
<div> tag will be bound with the frmSubmitted property using Property Binding.
The code replaces the Save button with the submit button. The following listing
shows the modified markup for the table enclosed using <form>

Listing 20.6: The form markup with databinding and form submission

136 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

In employee.html, create a <table> which shows the list of Employee added in the
Employees array. This table is enclosed in a <div> tag. The <div> tag is bound using
frmSubmitted property to the hidden property using Property Binding, initially
hiding this table when the form loads and making it visible when the form is submitted.
The code has a new button at the bottom of the table which, is bound with the
loadFrom() function using click Event Binding. When this button is clicked, the
Employee List will be hidden and the Employee Form will be displayed. Listing 20-7
shows all the modifications in index.html.

Chapter 20

137

Working with Forms

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 20.7: The table which will be populated based on Employees

To use the FormsModule for the application, import it into the NgModule defined in
the main.ts file as shown in Listing 20.8

Listing 20.8: Importing form module

The use of FormsModule in the NgModule is shown in the following Listing.

Listing 20.9: Declaration of @NgModule

138 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

RUNNING THE APPLICATION

Right-click on index.html and select Open in Command Prompt. Enter the following
command from this command prompt

npm run start

The Employee Form will be shown as seen in figure 20-1

Figure 20.1: Running form

Enter Employee details in the TextBoxes and click on the Submit button. The Employee
List will be displayed as shown in Figure 20-2:

Figure 20.2: Employees data displayed in table

Click the OK button and the Employee form will be displayed with TextBoxes cleared.

This code does not formally use the ngForm object directive because the <form> tag
in the Employee.html is present within the scope of the EmployeeComponent. This
upgrades the <form> tag to ngForm.

139Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

21
Angular 2 Model-Driven Forms

CHAPTER 20 FOCUSED ON Angular 2 Forms and the basic set of controls and
directives to be used in forms. It demonstrated how to post data using Angular form.
In Angular 2, Forms are created in two different ways:

1.	 Model-Driven Forms
a.	 The form is designed by importing the

ReactiveFormsModule.
b.	 The validation logic is separated from the

form and handled at the component class
level in the code.

c.	 Since the validation logic is isolated from the
form, it can be unit tested easily.

2.	 Template-Driven Form
a.	 The form is designed by importing the

FormsModule.
b.	 The validations are handed in the template .
c.	 The unit testing of the validation is tricky.

This chapter will discuss and implement Model-Driven forms.

Model-Driven Forms

Traditionally, a Form is composed of the following parts:

•	 The DOM, for form rendering.
•	 The field definition within the DOM, which is also known

as a Template.
•	 The client-side UI logic, e.g. validation, field default values,

etc. known as the Form Model.
•	 The domain model, which defines the fields that are exposed

to UI elements.

In an earlier Angular release, the form model used for validation was provided using
the validation directives in the UI itself. In Angular 2, a form model is created using the

140 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

FormGroup object. This object is used to aggregate values of each child FormControl
into one single object using its name as key. This object can be used to create a form
model to track validity of the form, and its controls.

This chapter uses the FormGroup object to create the Form model for data binding
with UI. Since the Model-Driven approach isolates the UI logic from the DOM, it is
more testable and easy for maintaining code.

This chapter is implemented using the code of Chapter 20. If you want to follow
along, make a copy of the code from Chapter 20 and make sure it is running before
proceeding further.

Modify main.ts to use the ReactiveFormsModule module from the @angular/forms
package as shown in the following listing:

Listing 21.1 main.ts file importing ReactiveForms module

Modify employee.component.ts to implement the Model-Driven form by importing
@angular/forms module of Angular 2 as shown in the following listing:

Listing 21.2: Importing form group and control module

In the code, create the FormGroup so that the model can be defined to expose the
user interface using Data-Binding. The FormControl represents an input field which
provides input value and validity of the value. This is used to sync all form control

Chapter 21

141

Angular 2 Model-Driven Forms

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

elements into a FormGroup. The FormGroup can also represent a collection of all
form elements whose values will be used to represent the state of the form.

In the EmployeeComponent class, declare the FormGroup and FormControl objects
as shown in Listing 21.3.

Listing 21.3: Declaration of FormGroup and FormControl Objects

The form object is used to define a collection of fields that are defined using Form-
Control object e.g. EmpNo, EmpName, etc.

The Constructor of the EmployeeComponent class uses the FormGroup object to
group all the Controls for defining Data-Model by using properties of the Employee
model class as shown Listing 21.4.

Listing 21.4: Creating FormGroup using FormControl

The FormControl object is instantiated using the Employee properties passed to it.
The FormControl constructor can optionally also pass the validation rules as input
parameter for validation of properties. The implementation of the validations can be
seen in forthcoming Chapters 22 and 23. The entire EmployeeComponent code will
be as shown in listing 21-5:

142 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 21.5: The Complete code

Chapter 21

143

Angular 2 Model-Driven Forms

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

To define the model binding with DOM elements, modify the employee.html <form>
tag using the formGroup directive. This represents the FormGroup defined in the
EmployeeComponent. The formControlName represents the name of the form ele-
ment into the formGroup. The employee.html will be modified as shown in listing 21-6:

144 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 21.6: The markup with Databinding and formControlName Declaration

Chapter 21

145

Angular 2 Model-Driven Forms

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

146 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Save the project. To run the project, right-click on Index.html in the File explorer of
VS Code and select option Open in Command Prompt. Run the following command
from this command prompt:

npm run start

This will start the server.

Open the browser and enter the following address:

http://localhost:3000

The browser will display the following output:

Figure 21.1: Loading form in browser

Enter values for the fields and click on the submit button. The data will be saved as
shown in Figure 21-2:

Figure 21.2: Result with list of Employees.

Click on the Ok button to clear the form.

Conclusion

Model-Driven form is a new feature introduced in Angular 2. This feature allows
you to isolate fields from the DOM using FormBuilder, ControlGroup and Control
objects. Since fields are isolated from the DOM, they can be set for validation rules
and unit-tested easily. This leads to maintainable code.

147Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

22
Angular 2 Form Validation

IN ANY WEB APPLICATION, form validation plays a very important role. Validation
provides a mechanism to restrict the end-user from entering wrong inputs. Angular 2
uses in-built validation features of HTML 5 like required, minLength, maxLength, etc.
One important point to be noted here is that although HTML 5 validations can be
suppressed using the novalidate attribute of the <form> tag, Angular 2 can validate
the form fields using validation attributes like required, minLength, maxLength, etc.

This chapter will implement validations on the EmployeeComponent created in
Chapter 21.

Validation of controls in the HTML form can be performed using the following attri-
butes:

•	 required: Used for specifying the value of input element as
mandatory

•	 pattern: sets the regular expression for the data to be entered
in an input element

•	 minlength: The minimum length of the text entered in the
input element

•	 maxlength: The maximum length of the text entered in the
input element

To implement Databinding, the ngModel directive is used; but to validate the data
updates using ngModel, the following set of classes must be used to validate the
updated state. Angular 2 adds these classes to the form controls when the validation
runs on them.

•	 ng-valid: true when the control’s value is valid.
•	 ng-invalid: executed as true when the control’s value is

invalid.
•	 ng-dirty: true when the control’s value is changed.
•	 ng-pristine: executed as true when control’s value is

unchanged.

148 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

To implement this chapter, modify Employee.html as mentioned in the following
listing:

Listing 22.1: Markup with validations

Chapter 22

149

Angular 2 Form Validation

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

150 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter 22

151

Angular 2 Form Validation

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Observe the following declarations in the form tag as shown in Listing 22.1:

The [formGroup] is used for checking the validity of the form. The validation at the
field level is defined using the following attribute values set for the <input> elements
(check Listing 22-1)

This code taken from Listing 22-1 has the following validations implemented:

•	 The pattern attribute is used to define regular expression
validation on the input element.

•	 The formControlName="empno" defines the <input>
element as form field and the form.controls.empNo.
dirty is used to verify the status of the element. If this
is changed, then the value entered in the input element
will be checked for validity using *ngIf directive. The form.
controls.empNo.pattern value is used to check if
the value entered is valid against the pattern attribute value
for input element.

Note the following markup carefully:

152 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The expression [disabled]="!empForm.valid" will disable the submit button
if the form has invalid values.

To run the application, right click on the index.html and select Open in Command
Prompt. Run the following command on the command prompt:

npm run start

This command will start the server. Open the browser and enter the following URL:

http://localhost:3000

The form will be displayed in the browser with submit button as disabled:

Figure 22.1: Loading form

Enter a negative value for the EmpNo and the field will be immediately validated
with a validation error as shown in Figure 22-2:

Figure 22.2: Result with Validations

Chapter 22

153

Angular 2 Form Validation

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Enter valid values in all textboxes to enable the Submit button as shown in Figure 22-3:

Figure 22.3: Valid Form

Conclusion

We saw how Angular 2 provides three out of the box validators which can be applied
using HTML properties. Chapter 23 shows yet another way of validating forms using
the Control class.

154 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

23
Angular 2 Form Validation with
Control Object and Custom
Validation

CHAPTER 22 EXPLAINED THE use of inbuilt validators to perform standard
validation on DOM elements in Angular 2. It used the ngForm object to evaluate the
validations on every DOM element, as well as *ngIf directive for evaluating validations
and displaying error messages.

Custom validation is needed to implement a domain specific validation as per business
needs. This helps to implement more accuracy in the data posted by the end-user,
to the application. E.g. performing a validation on the digits of a Credit-Card with
respect to its format.

This chapter will explain how to implement Form validation using the formControl-
Name object (discussed in Chapter 21) and the implementation of custom validation.
The formControlName object is used to define fields to bind with the DOM elements.
The constructor of the Control object accepts the model property and the validation
rule as input parameters.

Open the code for Chapter 22 and modify the employee.model.ts file to add a new
property named email as string, as shown in the following listing:

Chapter 23

155

Angular 2 Form Validation with Control Object and Custom Validation

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 23.1: The Employee class with Email property

Add a new file named validator.ts to the project. This file will contain the CustomVal-
idator class for validating the e-mail address for lowercase characters only. Add the
code to it as shown in Listing 23-2.

Listing 23.2: The Custom Validation Implementation

The emailAddressValidator function contains the logic for validating e-mail addresses
using a regular expression.

To use this custom validator in the EmployeeComponent class, the code imports the
CustomValidator class as shown in listing 23-3.

156 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 23.3: Importing Custom validator

Import the following modules for component initialization and validators class as
shown in Listing 23-4:

Listing 23.4: Importing required dependencies

Also add validation rules in the ngOnInit of the EmployeeComponent class as shown
in Listing 23-5:

Listing 23.5: Implementing ngOnInit() with Custom validator

Please note that the code has an array of validation rules to the FormGroup constructor
using Validators.compose() function. In the code, the required validator and pattern
validator rules are used for the fields. The email field is validated using the static
method emailAddressValidator defined in the class CustomValidator.

The entire code of the EmployeeComponent.ts file is as shown in listing 23-6.

Chapter 23

157

Angular 2 Form Validation with Control Object and Custom Validation

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 23.6: The complete code

158 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

To experience validation rules on the UI, modify the Email field and its validation rule
of Employee.html as shown in listing 23-7.

Listing 23.7: Using Custom validator in Html

Chapter 23

159

Angular 2 Form Validation with Control Object and Custom Validation

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The entire code of Employee.html is shown in listing 23-8.

Listing 23.8: The complete html code

160 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter 23

161

Angular 2 Form Validation with Control Object and Custom Validation

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

162 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Notice that since the form validation for model properties (like EmpNo, EmpName)
is implemented using the FormControl class, and for Validators object using the
validation rules in the EmployeeComponent class (as explained in Listing 23-6 in
ngOnInit() function), all the validation attributes on DOM elements (like required
and pattern) are removed from the template as seen in listing 23.8.

To run the application, right click on index.html in VS Code and select Open in Com-
mand prompt. This will open the Command prompt. Run the following command
from the command prompt:

npm run start

This will start the server.

Open the browser and enter the URL http://localhost:3000 to load the form in the
browser as shown Figure 23-1.

Chapter 23

163

Angular 2 Form Validation with Control Object and Custom Validation

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Figure 23.1: Loading form

Note that the Submit button is disabled. Enter invalid values in input elements (e.g.
delete 0 from EmpNo), enter text in Salary element, etc. and the form will show
validation errors as seen in Figure 23-2.

Figure 23.2: Result with validation

When all valid values are entered, the Submit button is enabled and you can post
the values to the server.

The validation rules defined in the ngOnInit() function isolates the form model code
from the DOM.

Conclusion

Angular 2 provides different ways to validate data in a form. The Form control object
has a uniform yet flexible API to validate the values using both built-in and custom
validations. This chapter discussed how to write a custom validator using the Form
control.

164 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

24
Template-Driven Forms

THE PREVIOUS CHAPTERS (FROM 20 to 23) explored Angular 2 form basics,
Model-Driven forms, standard validations, and Custom validations. The advantage
of the Model-Driven form approach is that the form-model is isolated from the DOM,
simplifying maintenance and testing.

Why Template Driven Forms?

Forms in an Angular 2 application can be developed using another approach called
Template-Driven forms. Typically, this approach can be used to build utility forms
like login-forms, simple data-entry forms (create-contact forms); those who need
a simple model, as well as data-binding and validation rules, and can be accessed
repeatedly in the application. This type of form can be developed with a very little
code requiredusing an important concept known as Template Reference variables.
This is explained in a later section of this chapter.

In Angular 2, Template Driven forms automatically applies form-level directive to the
<form> which creates FromGroup and links it with the form. Each <input> element in
the form will be registered with the control group. Validation attributes e.g. required,
pattern, etc. can be applied on these <input> elements for validations.

Furthermore, by using [(ngModel)], the databinding between model and form element
can also be implemented, hence the application code (the component code) need
not contain complex logic. Since, the validation, binding, etc. is implemented in a
declarative way, they are known as Template Driven Forms.

To implement a Template-Driven form, create a new project using Visual Studio Code.
Follow all steps given in Chapter 5—Angular 2 Development Environment.

Chapter 24

165

Template-Driven Forms

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The Project will have a project structure as shown in Figure 24-1:

Figure 24.1: The Project structure

In the app folder, add a new file of the name employee.model.ts with the code as
shown in listing 24-1:

Listing 24.1: The Model class

Now in the same app folder, add a new file of name employee.html with HTML markup
as shown in Listing 24.2.

166 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 24.2: Html markup with form

The above code uses a new syntax for defining references to an instance for ngForm i.e.
#empForm, and for ngModel it is #empNo. This is a concept of Template Reference
Variable.

Chapter 24

167

Template-Driven Forms

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Template Reference Variable

Angular supports creating variables for the elements on the page; these variables
are called template reference variables. This object contains the DOM object of the
element on which it is applied. The advantage of template reference variable is that
it can be referred from anywhere in the template. The variable’s value is set to the
element on which it is defined. The other syntax for defining the Template Reference
variable is using ref- prefix, e.g. the #empNo can also be defined as ref-empNo as
shown in the following snippet.

Using the Template Reference Variable #empForm, the ngForm directive is exposed
and accessed with its reference. This can further be used for tracking validity of the
input.

In the project, add another file in the same app folder with the name template.
component.ts. Add the following code in it:

Listing 24.3: The component code

168 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The Template-Driven form simply uses the form variable object (#empForm) for
performing form-level validations.

In the app folder, add main.ts and write the following code as shown in listing 24-3.

Listing 24.3: The NgModule

This will import the TestComponent class.

Make the changes in body tag of index.html as shown in listing 24-4

Listing 24.4: Using template url as html tag in index.html

This step renders the html template.

To run the application, right click on index.html in VS Code and select Open in Com-
mand Prompt. Enter the following command on the Command prompt

npm run start

In the browser enter the URL:

http://localhost:3000

The following result will be displayed:

Chapter 24

169

Template-Driven Forms

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Figure 24.2: Loading the template-driven form

To test the validations, remove default value of EmpNo in the TextBox and enter
some text in EmpName TextBox. Now remove the text and the following result will
be displayed instantaneously:

Figure 24.3: Execution of the template-driven from with validation

Conclusion

The advantage of template-driven forms is that the approach is very simple and
very familiar to Angular 1 developers. This article demonstrated how to build tem-
plate-driven forms with validation using the latest forms module.

170 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

25
Services

SO FAR, WE HAVE covered Angular 2 Components, Directives, and Forms. As an
application starts using these features and keeps growing in size, the development
team starts looking for options to separate the business logic out of these UI pieces.
The can be used anywhere across the application once it is out of any component
or directive.

Angular 2 has Services for this purpose.

Service is an overloaded term in software development. The term “service” is basically
a piece of code that holds some common logic and is available to any other piece.
In Angular 2, a service is a TypeScript class. It can be injected into any component,
directive, or service and can be used whenever needed.

Services in Angular 2

Any TypeScript class can be used as a service in Angular 2. Angular 2 has a decorator
Injectable, to be used with services when metadata about the service has to be emitted.
Even if not needed, it is recommended to apply this decorator to make it future-proof.
The following snippet shows the syntax of using Injectable on a service:

Listing 25.1: Syntax of creating a service

To use this service in a component, it must be declared in the providers property of the
Component annotation. Snippet 25.2 shows how to declare a service in a component
and inject it:

Chapter 25

171

Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 25.2: Syntax of creating a component

The providers array can have any number of services declared in it. Now the service
SampleService can be used by any code block that loads under the subtree of the
AppComponent.

Alternatively, it can be specified in the providers block of the module to make it
available to the entire module. Listing 25.3 shows this:

Listing 25.3: Declaring a service in a module

TypeScript is being used throughout this book, so there is no need to specify anything
other than type of the service for dependency injection. This is because TypeScript
type is used as the token for dependency injection. When the TypeScript code is
converted to JavaScript, it creates the DI annotations for all dependencies using the
type assigned to the injected objects.

Creating and Using a Service

Let’s create a books list service. The application consists of a component to which a
user can add a book, mark the book as read, and delete the book. The component
will load a static list of book; the service will hold the static list of books, manage the
tasks of marking books as read, and delete books from the list. The component will
call these methods of the service based on the user’s action on the page.

To setup the project, use the starter project created in Chapter 5. To this, install the
@angular/forms package using the following command:

172 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

npm install @angular/forms --save

This package has to be registered with SystemJS to be able to refer it in the application.
Add the following entry to the map configuration in the file systemjs.config.js:

"@angular/forms": "node_modules/@angular/forms"

And the following entry to the packages section in the file systemjs.config.js:

"@angular/forms": { "main": "bundles/forms.umd.js", "defaultExtension": "js" }

With this, the setup is ready and we can start building the application. First, let’s define
the service with the methods described above. Snippet 25.4 shows the service:

Listing 25.4: Code of model class for Book and the BooksService

Chapter 25

173

Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The component is straight forward. It consumes the service seen in Listing 25.4 and
exposes the functionalities of the service to the view through its wrappers around
the service methods. The component loads the books in the ngOnInit lifecycle hook
and, in every operation performed from the UI, the books list is refreshed from the
service. Snippet 25.5 shows the code of the BooksComponent:

Listing 25.5: Books list component to be added to the file books.component.ts

174 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The view of the component consists of a textbox, a button to add a new book, and
a table that lists the books in the service. Every row in the table has a checkbox to
mark a book as read. The checkbox is disabled with a button to delete the book after
a book is marked as read (see Figure 25.1). The view uses Angular 2’s bindings to bind
the members in the component to different actions and controls. Snippet 25.6 shows
the markup of the view:

Chapter 25

175

Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 25.6: Template of BooksComponent to be added to the file books.component.html

When you run the application, you will see a list of books on the screen. You can add
new books, mark the existing books as read, and delete books. Figure 25.1 shows
how the page looks on the browser:

176 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Figure 25.1: Screen shot of books list

Using Asynchronous Services

A common pattern across most of the enterprise applications is that the data of the
application comes from a server and the call to a deployed back-end service is always
handled asynchronously. Even when the services are not ready, a good practice is to
follow asynchronous approach with data, so that a lot of code doesn’t need to change
when the backend services are ready. Let’s refactor the methods of the BooksService
to make them asynchronous.

As the sample uses in-memory data, it can resolve the value immediately using an ES6
promise to mimic the asynchronous behavior. Snippet 25.7 shows the asynchronous
version of the getBooks method:

Listing 25.7: Asynchronous version of getBooks method

The value returned from this method cannot be assigned to the books array in the
component. The value is made available after the promise is resolved, and can be
assigned in the success callback of the promise. Snippet 25.8 shows the modified
refreshBooks method of the component:

Chapter 25

177

Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 25.8: refreshBook method consuming async getBooks method

After making these changes, the application runs as it previously ran. Though the
sample uses ES6 promises here, because of zones in Angular 2, the change detector
need not be called explicitly. As soon as the asynchronous operation is completed,
the zone kicks in the change detection process and the UI is updated according to
the new data.

You may refer to the sample code of this chapter to see how the other methods are
modified to follow asynchronous syntax.

Conclusion

Services define some important parts of an Angular 2 application and can be used to
hold the business logic, data access logic, and anything else which is independent of
the UI of the application. This chapter demonstrated simple services. Future chapters
will cover more advanced features of Services.

178 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

26
Dependency Injection Overview

ANY COMPLEX APPLICATION MUST follow a set of design patterns and obey
the principles of object-oriented design (OOD) to make the code easy to read, maintain,
and extend. Though JavaScript is not an object- oriented programming language,
it uses objects quite extensively. So, most of the principles followed in the OOPs
languages can still be applied to JavaScript. The code of an application written in
JavaScript would be extensible and easy to understand if it follows these principles.

One of the widely used patterns to keep the code cleaner is Dependency Injection
(DI). According to Dependency Injection, a software component should not create
its dependencies; rather, the dependencies should be injected by an external source.
The external source should know how objects are created, which reduces the chance
of duplicating code for creating objects. The external source is called Inversion of
Control container or, in short, the IoC container. Angular 1 uses DI quite extensively
and this pattern is continued in Angular 2, in a more flexible way.

Dependency Injection in Angular 2

Angular’s DI system is based on injectors. Angular creates an injector when the
application is bootstrapped. All the application dependencies are registered in the
injector, and the injector serves them when they are requested. The injector can be
configured by registering providers at the module level or at a component level. For
now, the discussion will be focused on a module and components will be discussed
in a later section in this chapter.

A provider registered in the NgModule decorator is registered in the root injector. All
of the built-in services of Angular are registered in the root injector as well. These
dependencies are available across the application; they are not limited to the module
that registers them.

Chapter 26

179

Dependency Injection Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Injecting Dependencies into Components

A registered dependency can be injected into a component’s constructor. The Type-
Script type of the injectable is used by Angular 2 for metadata information while
injecting the dependency. Listing 26.1 shows how to inject a sample service in a
component:

Listing 26.1: DI with components

In general, the dependencies injected in a component are marked as private. This is
to keep them private to the component class and allow access to them within the
component using the this keyword.

Injecting Dependencies into Services

Like components, Services in Angular 2 are TypeScript classes. A service with depen-
dencies needs to be marked with the decorator @Injectable. The following snippet
shows this:

Listing 26.2: DI with Services

As in the case of components, the dependencies in the services are also marked
as private to make them available inside the service class and to not expose them
through the objects.

Though the decorator Injectable is necessary when the service has dependencies,
best practice is to apply this decorator even when the service doesn’t depend on any
objects in order to make the service future-proof. The decorator also differentiates
the classes used for model types and the services.

180 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Optional Dependencies

If a component or a service depends on an object that comes from a third party
library or an object that holds a value conditionally, it can be marked as an optional
dependency. For example, you may define a service named Logger to print logs in the
browser console while debugging the application, but this service is not a mandatory
object for any of the code blocks in the application. They can be functional even when
they don’t log the messages. So, the service Logger can be marked as an optional
dependency. The decorator @Optional makes a dependency optional. Before using
an object obtained as an optional dependency, it is best to determine whether it
holds a value. Listing 26.3 shows usage of an optional dependency:

Listing 26.3: Optional dependency

Using Injector to get Dependencies

In rare cases, a service or a component may not need all of the dependencies up
front and may load such dependencies on an as-needed basis. Such dependencies
can be loaded dynamically using an Injector. Injector by itself is an injectable, and can
be injected into a service or a component like any other service. Listing 26.4 gets a
service using Injector:

Listing 26.4: Using an Injector

Injecting non-services

Aside from services, an application would need several other types of dependencies.
These include configuration objects, application constants, global objects, or any other
types of objects. Angular 2 provides a way to inject these values using DI.

Chapter 26

181

Dependency Injection Overview

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Registering the objects as dependencies involves a couple of steps. A dependency
token must be created for the object, which can be done using the class OpaqueToken
defined in the core package of Angular 2. The following snippet creates a token:

Listing 26.5: Creating an OpaqueToken

This token can be used to provide any value; creating a type for the value is optional.
Let’s create an interface to represent the structure of the value and store a couple of
values in the object.

Listing 26.6: Creating an object to be registered as a dependency

Now this object needs to be registered with the token created in Listing 26.5. This
value needs to be registered with the providers option in the NgModule decorator.
The following snippet shows the syntax for both of them:

Listing 26.7: Registering a token as a dependency

To inject this value into any code block, the Inject decorator must be used and the
token APP_CONST must be passed as an argument to the decorator. As the Inject
decorator emits metadata for the member injected in, it is not needed to specify the
data type of the object. It is still advised to assign the data type for type safety and
tooling support while using the object. The following snippet injects APP_CONST into
the MyComponent class:

182 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 26.7: Injecting a token into a component

Injecting Dependencies into Components

Angular 2 supports injectors at the component level. Injectors can be configured
at the component level using the providers option in the Component decorator. The
injector (created at the level of a component) acts in the component and its children
components. The following snippet shows how a dependency can be registered in
a component:

Listing 26.8: Registering a service in a component

An instance of the service Service1, registered in listing 26.9, is made available to the
component MyComponent and to all of its children components and directives. If a
child component registers the same service again, it creates a new instance of the
service. Additionally, since the component tree gets a new instance of the service,
the root-level instance of the service won’t be considered once the same service is
registered at the component level.

The providers option in the component is similar to the one at the module level. It can
be used to register the OpaqueToken discussed above as well.

Conclusion

Angular 2 is equped with a powerful Dependency Injection mechanism. This chapter
explored different ways to inject services and other objects in Angular 2, which greatly
aide in keeping the code base cleaner and making the code testable.

183Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

27
Using Services

CHAPTER 25 DEMONSTRATED HOW Services can be used to provide some
functionality to the components, and how Services can be injected into other services.
Once a service is declared either in the module or a component and is used in other
services and components that are in the same context, the service becomes singleton.
In other words, the same object of the service will be shared across the application.

While this pattern works in several scenarios, sometimes the application may need dif-
ferent instances of the service, at different levels. For some services, every consuming
component may need a new instance. The application may tend to take advantage of
a class that provides a better implementation of the functionality than a service does.

This chapter explores different ways of using the services with examples. To follow
along, you can start with the development environment created in chapter 5. To this,
install the @angular/forms package using the following command:

npm install @angular/forms --save

This package has to be registered with SystemJS to be able to refer it in the application.
Add the following entry to the map configuration in the file systemjs.config.js:

"@angular/forms": "node_modules/@angular/forms"

And the following entry to the packages section in the file systemjs.config.js:

"@angular/forms": { "main": "bundles/forms.umd.js", "defaultExtension": "js" }

184 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Using Service in a sub-tree of Components

Let’s create a service to hold a list of cities and use it in two components. Both of these
components will have the same UI; the first one would be loading the second one in
its own template. Listing 27.1 shows the definition of the service:

Listing 27.1: Code of DataService

The service must be declared in the providers option of the module. Listing 27.2 defines
the module for the application and declares the components and services needed.
The components will be defined in subsequent sections of the chapter.

Listing 27.2: Code of the module for the demo application

The components FirstComponent and SecondComponent used in the module will
be added next. Listing 27.3 shows the definition of the FirstComponent. It uses the
SecondComponent and the DataService defined in Listing 27.1:

Chapter 27

185

Using Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 27.3: Code of FirstComponent

The component SecondComponent also has a similar definition, except it doesn’t have
the HTML tag of the SecondComponent, and it doesn’t register the DataService in its
providers array. The SecondComponent is shown below:

186 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 27.4: Code of SecondComponent

The output of this code is shown in Figure 27.1:

Figure 27.1: Two components using the same service

Chapter 27

187

Using Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

If the FirstComponent adds a city, it immediately appears in the SecondComponent and
vice-versa. This happens because the array cities is referred in both the components
by reference, and the service is used as singleton.

Now make a small change to this by registering the service DataService again in the
SecondComponent. Listing 27.5 shows the Component annotation of SecondComponent
after making this change:

Listing 27.5: Modified annotation of SecondComponent

After making this change, upon running the application, you will see that adding a
city in FirstComponent does not add it to the SecondComponent, and vice-versa. If the
service is registered again in a component, the framework will create a new instance for
the context (a component or a sub-module) where it is registered for the second time.

Controlling the Way an Object is created for a Service

USING A DIFFERENT CLASS FOR SERVICE

Listing 27.2 used the service registered at the module level. The providers array was
defined as:

..which is the short cut of the following statement:

Here, the same class is used as both token and map. It is possible to use one class as
the token, and another class inherited from the token class, as the service. Derive a
class from the DataService class. Snippet 27.6 defines the derived class:

188 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 27.6: Code of ChildDataService

The child class overrides the values assigned in the array of the parent class with a
new set of values. Now the class ChildDataService can be registered as the class for
the token DataService. The following snippet shows how to do this:

The following component shown in Listing 27.7 uses this way of service registration:

Listing 27.7: Code of ChildDataComponent, it uses ChildDataService

When this component renders on the page, it displays the overridden data in the
ChildDataService.

Chapter 27

189

Using Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Figure 27.2: Output of component using ChildDataService

REPLACING AN OLDER SERVICE WITH A NEWER SERVICE

The mechanism used in listing 27.6 can be used to override an older service imple-
mentation with a new implementation. The application can override the old service
with a new one using the providers option. For example, if the application used a
service (OldDataService), but a new service (named NewDataService), with the same
structure and better access to the data, is available. The following snippet shows the
statement to override the service:

This is same as the syntax used earlier. The benefit of this approach is that the user
need not go on searching for occurrences where the old service is used. The new
service can be registered at an upper level so that it replaces the old service in the
entire module, the component subtree, or the application.

Of note: if the class NewDataService is already registered as a service, the application
will have two different objects of the class: one from the original registration and
the other from the useClass. This behavior can be changed by using the useExisting
property in the provider object, in place of useClass. The following snippet does this:

Before using useExisting, the target class has to be registered as a service. Otherwise
it will fail saying “There are no providers for NewDataService”.

To see this in action, you can modify the providers property in the listing 27.7 to use
the useExisting option to register the ChildDataService as shown below:

Otherwise, you can take it as an assignment to write a new class and see it in action
using the useClass and useExisting options.

PROVIDING VALUES FOR SERVICES

Sometimes, the application may try to use a fixed value for a service, rather than
asking Angular to create an object using the class. In such a case, the service can be
registered using the useValue property of the provider registration, and assign this
object. Listing 27.8 shows an example of providing a value for the DataService:

190 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 27.8: A sample value for DataService

This can be registered in the component or module as shown in listing 27.9.

Listing 27.9: providers using useValue

Using Factory Functions for Services

Factory pattern is commonly used to abstract the logic of creating an object depending
upon certain values in the application, and the environment. Angular 2 supports this
pattern through the useFactory property in the providers option. A function creating an
object of the class can be registered as the factory function for the service. Listing 27.10
creates a simple factory function for DataService, like any other class or object, the
factory function can be created anywhere and imported into the file creating module:

Listing 27.10: A factory function returning an object of DataService

Listing 27.11 specifies this method in the providers option.

Listing 27.11: providers using useFactory

Conclusion

This chapter demonstrated how Services can be registered in different ways in
Angular 2 and how their objects can be controlled using different options available
in the provider registration. These features make the DI system in Angular extremely
powerful and flexible. Some of these features help in mocking services in unit tests
as well. We will cover these features in the chapters on unit testing.

191Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

28
Observables and Reactive

Programming

AN APPLICATION CAN RECEIVE information from a number of different sources.
The source could be an array, a backend API, a real-time data stream, or an event from
a UI element. The responses received from the sources are sometimes predictable,
and sometimes dynamic. Some of them work synchronously, while others work
asynchronously. Regardless, the application receives some data from these sources
and uses it to provide functionality.

There are different approaches to handle each of these cases. Ideally, all of them can
be handled in the same way. Reactive programming provides us with a way to do that.

Reactive programming is programming with event streams. Any source of information
can be viewed as an event stream. For example, consider iterating through an array.
It can be viewed as an array emitting the values one by one, and the consumer of
the array listening to it as long as the array has data. The consumer can receive this
data and use it in the way needed.

The event stream in reactive programming consists of a series of events from a single
source. Each of these events may either pass or fail. The stream doesn’t prevent the
next event from executing when an event fails. At the end of the stream, it sends a
signal indicating that the stream has completed execution.

RxJS is the JavaScript library that provides reactiveness in JavaScript. Using RxJS, any
event can be converted to an event stream and have a single API to handle any type
of event. More information on the paradigm of reactive programming and the RxJS
library can be found on the official site of RxJS.

192 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Observables in RxJS

RxJS defines several objects to work with event streams. Any event stream in RxJS is
viewed as Observable, and it notifies an Observer object whenever an event occurs. If
you are familiar with promises, you can imagine Observable as an extension to promise.
A promise gets the result once, whereas an Observable can get the result from its
source multiple times. This section will explore a few ways of creating observables
and using them.

Let’s write the simplest possible observable to return a single value when it is asked
to send values. Listing 28.1 shows an example:

Listing 28.1: A simple observable

Here, the numeric value 10 is converted into an observable using the of operator
of the Observable API. This value is returned to the success callback of the subscribe
method. The subscribe method accepts two more callbacks: one for error, and the
other to indicate that the sequence is complete. Let’s add two more callbacks to the
subscribe method:

Listing 28.2: Observable with callbacks to success, error and completed

Upon running this snippet, the value 10 and completed message “Completed” are
displayed. Though it works, the observable with a single value is not a true demon-
stration of what it can offer. The next example shows an observable derived from

Chapter 28

193

Observables and Reactive Programming

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

an array. The from operator of observable helps convert an array into an observable.
Listing 28.3 demonstrates an example:

Listing 28.3: Observable from array

The subscribe method would be called for every item in the array. We are deliberately
passing null for the failure callback, as the observable will not fail in this case. Once
all elements in the array are processed, it calls the completed callback.

Promises can be converted into observables, too. Listing 28.4 converts an ES6 promise
into an observable:

Listing 28.4: Observable from promise

Listing 28.4 has a static promise which fails with a result immediately. So the error
callback of the subscribe method would be called. This is the reason the success
callback is not implemented in the snippet.

Using Observables in Angular 2

Observables can be used seamlessly in Angular 2 applications. The framework uses
observables quite extensively to work with HTTP APIs (will be discussed in Chapter 29).
To see how observables can be used in Angular 2, let’s wrap setTimeout around an
observable and use it in a component. Listing 28.5 shows code of the component:

194 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 28.5: A sample component using observable

The above snippet does the following:

•	 Creates an observable over setTimeout using the Observable.
create method

•	 The setTiemout emits a value after 2 seconds using the
method observer.next

•	 The observable object timeout gets a notification when the
value is emitted and it sets the new value to the property
name

The value displayed in the data binding expression changes as soon as the value is
assigned in the subscribe callback.

Creating a chat application using Angular 2 and RxJS

Following these basic examples of RxJS, let’s move on to build an application to
understand it better. This section will create a simple chat application to use some
of the features discussed, and to introduce you to some additional APIs.

Chapter 28

195

Observables and Reactive Programming

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Understanding the Application Design

The chat application will be about the interaction of a user with a bot. The bot will
have a fixed set of messages, and will respond with a random message from this list to
every message it receives from the user. The application will have the following pieces:

•	 A component named AppComponent, to receive messages
from the user and to display the list of messages

•	 A service named ChatBotService, to play the role of a bot
•	 Another service named ChattingService, to make the com-

munication happen

The services will make use of observables for communication. Here is how the com-
munication will happen between the services and the component:

•	 When the AppComponent receives a message from a user, it
sends it to the ChattingService using a method

•	 The ChattingService sends this message to the ChatBotService
using a method

•	 The ChatBotService picks a random message from the list
and emits it as next value in the observable

•	 The ChattingService subscribes to the observable provided
by the ChatBotService and it emits the message its own
observable

•	 The AppComponent subscribes to the observable of the
ChattingService and displays the message on the view as
soon as it is received

Setting up Model and Data

Now that it is clear how the application is divided and the way it works, it is time to
implement it. The basic requirements for the application are two interfaces, defining
types of user, and chat message objects. The User interface will have two properties:
name and avatar. The ChatMessage interface will have three properties to hold the
values of sending user, message tex,t and time of the message. Add a new file named
chat.model.ts and add the following interfaces to it:

196 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 28.6: Interfaces for user and chat message

The sample chat application will have just two users. Details of these users is stored
in an array. Listing 28.7 shows a snippet of the array:

Listing 28.7: Static array of chat users

The images for these users are chosen from the list of authorized photos available in
UI Faces, but may be replaced them with your choice of images.

Creating the ChatBot Service

As mentioned previously, the bot service includes a set of messages and will receive
a message and subsequently respond (with a randomly chosen message).

The Subject class of RxJS provides a pub/sub API to send and receive messages. The
sample will use this class to communicate between different pieces. The Subject object
will be wrapped around an Observable object. The Observable object will be made a
public property in the class so that a consumer can subscribe to it using the object.
Listing 28.8 shows the code of this service:

Chapter 28

197

Observables and Reactive Programming

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 28.8: Code of ChatBotService

198 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The above service exports the following members:

•	 getNextMessage: This method receives a message and passes
the message, in response to the subject nextMessage, after
a delay of 1 second. If the message received is “bye”, then it
responds with a “Bye” and completes the subject by calling
the complete method. The subject sends a completed flag
to its subscribers, and doesn’t send any messages after this
point.

•	 messageObservable: An observable object wraps the next-
Message subject. The consumers of the bot must subscribe to
the messageObservable object to get the response messages.

Creating the ChattingService

This service plays the role of a mediator. It abstracts the bot and the component
won’t know anything beyond this service. The following snippet shows the code of
this service:

Listing 28.9: Code of ChattingService

This service has the following public members:

Chapter 28

199

Observables and Reactive Programming

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

•	 messageNotifierObservable: A wrapper around the subject
sendNextMessage. Constructor of the service subscribes to
the messageObservable of the bot and passes the received
message to the subject sendNextMessage. The component
must subscribe to this observable to get the subsequent
messages.

•	 postMessage: This method receives a message from the
component and passes it to the bot.

Creating the AppComponent

The last piece of our application is the component which will allow the user will
interact with the bot. This is the only component in the application, so the application
will use it for the bootstrap process. Listing 28.10 shows code of the AppComponent.

Listing 28.10: Code of AppComponent

200 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 28.11 shows the HTML template of the component:

Listing 28.11: Template of AppComponent

The component performs the following tasks:

•	 Accepts a message from the user in a textarea and sends it
to the ChattingService

•	 Subscribes to the messageNotifierObservable of the Chat-
tingService to get the response message

Chapter 28

201

Observables and Reactive Programming

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

•	 Adds the messages to the array messages and displays them
on the UI

Figure 28.1 shows a conversation with the bot:

Figure 28.1: An instance of the messages in a chat bot application

Conclusion

RxJS is a rich library that provides a unified way to handle any type of data stream.
Angular 2 uses it quite extensively and encourages the use of observables. This chapter
demonstrated a simple chat application to show how seamlessly RxJS can be used
with Angular 2. This duo can be used to build some powerful applications.

202 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

29
Send and Receive Data with HTTP

ALL CLIENT APPLICATIONS HAVE a primary need to interact with a back-end
data service. The application would perform its operations based on the data, and
operations provided by the back-end service. In JavaScript applications, such services
are invoked using AJAX and the format of the result is obtained in JSON format. Most
of the modern browsers support the HTTP-based APIs XMLHttpRequest and JSONP to
communicate with the services hosted on the same domain, or in a different domain.
The applications, in general, use the wrappers around these APIs to avoid dealing with
the lower level configurations and rather focus on the business logic.

Angular 2 provides wrappers around these APIs, which produces observables in
response. The applications can subscribe to the observables and consume the result
when it is available.

This chapter will discuss how to use the APIs of Angular 2 to perform CRUD operations
over both XHR and JSONP.

CRUD Operations Using HTTP API

Using a set of services available in Angular 2 and CRUD operations, this section will
demonstrate how to fetch all books, add a new book, modify an existing book, and
delete a book. The REST APIs are built using the Koa framework of Node.js. A static
list of books is available in a JSON file. The sample application will read this data and
perform rest of the operations in the memory. So, once the Node.js server is restarted,
the changes made will be lost and the data on the screen will be same as the data
in the file.

Chapter 29

203

Send and Receive Data with HTTP

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Building the service

First, let’s build the service. As mentioned earlier, the application has a JSON file
containing a list of books. The name of the file is books.json. Listing 29.1 shows two
books from this file:

Listing 29.1: An excerpt from books.json

In addition to the NPM packages installed in Chapter 5 (while setting up the environ-
ment), several more packages are required to build the APIs. The following commands
install these packages:

•	 npm install co-body --save
•	 npm install koa-route --save

The code of the server file is available in the file server.js, located in the folder server
in the downloadable code of this chapter. You can copy the contents of this file and
replace it in your server.js file. The following listing shows code of this file:

204 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 29.2: Modified server.js

Chapter 29

205

Send and Receive Data with HTTP

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

You can test the APIs created before using them in the Angular application. For this,
run the sample using the following command:

> npm run start

And open your favorite browser and change the URL to http://localhost:3000/api/books,
ths should show the JSON payload containing the list of books on the browser. The
next section is going to hit the same API using code.

206 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Creating a Service to Interact with APIs

To consume these APIs in the Angular 2 application, a wrapper around the XmlHttpRe-
quest object is needed. Angular 2 has the service Http wrapping up the low level logic
of XHR and provides with an API that is easier to use. Methods of the service Http return
RxJS Observables. The consuming application must subscribe to the observables to
get their results and use them.

The Http service is defined in the package @angular/http. This package has an Angular 2
module named HttpModule, which gives access to the HTTP-related services defined
in the module. This module must be imported in the application module to be able
to use any of the HTTP based services. Listing 29.3 registers the providers while
bootstrapping the Angular application:

Listing 29.3: Application module

Before writing the service to read and write information on books, let’s define a model
class to represent the structure of the book object. This process makes good use of
the types in TypeScript and makes the code less prone to errors. Listing 29.4 defines
the class:

Listing 29.4: Structure of Book objects, to be added to book.model.ts

Chapter 29

207

Send and Receive Data with HTTP

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Let’s define a service to interact with the APIs we created. The service needs a reference
of the Http service. The code will be dealing with observables and it has to import
the class Observable from RxJS. Listing 29.5 shows the skeleton of the service class:

Listing 29.5: Skeleton of BookService, to be added to books.service.ts

The base URL was assigned to a private variable to avoid usage of the strings repeatedly
in the code. To fetch all books, an HTTP GET call must be made to the base URL itself.
It will return an Observable object, which will call its subscribe callback when the
asynchronous call is complete. The subscribe callback will be handled in a component,
so the service method will return the observable object that it receives. Listing 29.6
shows the method to retrieve all books:

Listing 29.6: getBooks method

The get method of the Http service returns a generic Observable object of Response
type. The response object contains: status of the response, type of the response (basic,
CORS, default, etc.), requested URL, response headers, methods to get the response
data as text and as JSON, and other properties regarding HTTP response received
from the request. The response object is passed to the callback function attached to
the subscribe method, an example of which will follow shortly.

The addBook method accepts an object of the Book type we defined above and sends
it to the post method of the Http service. This method, in turn, sends this object to the
HTTP POST API to add the book to the list. This method also returns a generic object
of Observable<Response> type. Listing 29.7 shows this method:

208 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 29.7: addBook() method

The method for editing a book accepts an object of the modified book and sends
it to put method of the Http service. To modify the correct book, the API needs the
ID of the book. This method also returns an object of type Observable<Response>.
Listing 29.8 shows this method:

Listing 29.8: editBook method

The last method needed in the service is to delete a book. The API needs the book
ID and, like other methods, the http.delete method returns an object of type Observ-
able<Response>. Listing 29.9 defines this method:

Listing 29.9: deleteBook method

Component Consuming the BooksService

The application needs a component to use the above service and provide an interface
for the user to work with the data. This component consists of a form and a table:
the form will be used to add or edit a book; the table lists the books and provides
buttons to delete a book and edit a book. Listing 29.10 shows the HTML template
of the component:

Chapter 29

209

Send and Receive Data with HTTP

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 29.10: Template of BooksComponent

210 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The class of the component obtains the object of the service through DI and loads
all books when the component is initialized. To load the books, it calls the getBooks
method of the service BooksService, subscribes to the observable returned from the
method, and gets the result in the subscribed callback method. Listing 29.11 shows
the imports required and defines the component with its ngOnInit lifecycle hook:

Listing 29.11: Code of BooksComponent

Chapter 29

211

Send and Receive Data with HTTP

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

A few things to note in the listing 29.11:

•	 The constructor assigns the field submitText with Add Book,
as the form will be in add state by default. This text will be
changed when a user edits a book. The formModes property
in the BooksComponent class holds the texts corresponding
to both the modes of the form; this is done to avoid repeti-
tion of the strings in the component

•	 The constructor of the component creates a new object of
Book. The form of the component uses this object to accept
values from the user

•	 The method refreshBooks calls the json method of the
Response object. This gives the list of books received from
the Koa REST API

When a user selects the edit option in the table, the selected book object must be
set to the form, and the text of the submit button of the form must be changed to

“Edit Book”. If you observe the template of the component, the book object bound
to a row is passed to the editBook method. The same object will be assigned to the
component’s private field book.

Listing 29.12: editBook method

When a user submits the form, the component will call add or edit methods of
BooksService, depending upon the text of the button. After receiving the response
from the service, the form must be reset to its initial state. Listing 29.13 shows the
methods (add, edit, and submit) of the component:

212 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 29.13: addBook, editBook and submit methods

Finally, the delete method accepts the book ID and calls the service method to delete
the book. Once the call is successful, it refreshes the data on the page. Listing 29.14
shows this method:

Listing 29.14: delete method

At this stage, the application looks like the following:

Chapter 29

213

Send and Receive Data with HTTP

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Figure 29.1: Books List page

GitHub Repo list using JSONP

The APIs hosted on a different domain can be accessed either by enabling CORS
(Cross Origin Resource Sharing) on the APIs or JSONP. If the API is CORS-enabled, Http
service can call it and access it using the process in the previous section. If the API is
not CORS-enabled, it can be consumed using JSONP.

The @angular/http module of Angular 2 includes the APIs to interact with the APIs
using JSONP. All of the services created to support JSONP are in the module Jsonp-
Module. This module must be imported in order to use JSONP in Angular 2.

Let’s consume the GitHub API to get a list of repos by technology and language. As the
GitHub API is hosted on a different domain, it must be consumed using JSONP. As the
component must only display the list of repos, the JSONP operation is performed in
the component itself. First, let’s import the JsonpModule into the application module.
Listing 29.15 shows the modified content of the main module:

214 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 29.15: Modified AppModule

Before calling the service, it is best to have a model class with the set of properties
needed to display on the page. Listing 29.16 shows the Repo class with the required
properties:

Listing 29.16: The model class Repo

The component needs to implement the ngOnInit lifecycle hook to fetch the data and
assign it to a field in the component. The GitHub API needs a couple of parameters
to be sent with the request. The query string parameters can be built using the
URLSearchParams class imported earlier. In addition to the input parameters with
data, the API needs another parameter to recognize that it is a JSONP request. The
ngOnInit method in the listing 29.17 adds these parameters and calls the API using
the Jsonp service:

Chapter 29

215

Send and Receive Data with HTTP

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 29.17: Code of GithubDataComponent

To make JSONP work, the module JsonpModule has to be added to the imports of the
application module. It is already done in the listing 29.3, you may revisit the listing
to see how the module is added.

The template of the component is straightforward. It has a table with the fields to
show the values received from the GitHub API. Listing 29.18 shows the template:

216 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 29.18: Template of GithubDataComponent

This page would look like the following figure:

Figure 29.2: Page showing Github repos

Conclusion

Angular 2 comes with built-in support for querying the REST APIs over HTTP, as well as
JSONP. This chapter examined how to perform CRUD operations using the services in
Angular 2 with examples. A future chapter will discuss how to consume secured APIs.

217Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

30
Using Built In pipes and

Parameterized Pipes

PIPES HELP YOU REPEAT filtering or formatting of your output. They can be used
in template expressions to improve the usability of views. Pipes transform displayed
values within a template. A pipe takes in data as input and transforms it to a desired
output as per the expectation of the data representation on the view. Pipes are more
useful when the data is represented using currency, uppercase and lowercase, etc.

This chapter discusses the built-in and parameterized pipes provided in Angular 2.
Some of the pipes discussed are Case pipes (uppercase and lowercase), Decimal,
Currency, Percentage and JSON pipes.

The syntax of a pipe is very simple. An expression is followed by the pipe symbol (|),
which is followed by the pipe name:

{{<EXPRESSION>|<PIPE_NAME>}}

The EXPRESSION is a property declared in the Angular 2 component class which will
be used for databinding. The PIPE_NAME can be a built-in or a custom pipe.

A Pipe can also accept any number of optional parameters separated by a colon (:). If
a Pipe accepts multiple parameters, then each parameter is separated using a colon
(:) . T h e f o l l o w i n g s y n t a x r e p r e s e n t s a p a r a m e t e r i z e d p i p e .

{{<EXPRESSION>|<PIPE_NAME>:Parameter1:Parameter2}}

To use the code-snippets of this chapter, create a new project using the steps discussed
in chapter 5. A new TypeScript file product.model.ts will be added to the app folder
in this project as shown in the following listing.

218 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 30.1: The Product Model class

This class will be used while using the JSON pipe.

Add a component class application.components.ts in the app folder which will define
properties to be exposed to the user interface. These properties will be used for
databinding with pipes. The code for this typescript class is shown in Listing 30.2.

Listing 30.2: The Component class with declarations

Chapter 30

219

Using Built In pipes and Parameterized Pipes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

As explained in code, there are various properties declared with their values initialized
in the constructor. We willuse these properties and functions later for databinding
on the View.

Add a HTML page app.html in the app folder. This page will define HTML elements
to test out Pipes and their output.

Uppercase and Lowercase pipes

These pipes as the name suggests, are used to change the case of the string input,
and output it in uppercase or lowercase. Consider the following HTML code listing:

Listing 30.3: Using uppercase and lowercase pipe

220 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

This listing uses the fullName property with a pipe applied on it. Add the following
tag in index.html in the body section.

Listing 30.4

To view the output, right-click on the index.html in VS Code and select Open in
Command Prompt. Run the following command on this command prompt

npm run start

Open the browser and enter the following URL:

http://localhost:3000

The following result will show the output for the Uppercase and Lowercase pipes.

Figure 30.1: The output of the uppercase and lowercase Pipe

The number, currency and percent Pipe

While displaying numeric data on the view, one should consider the various flavors
of numeric data representation. For example, numeric values can be displayed using
decimal format, or sometimes using the currency formats for localization purposes.

THE NUMBER PIPE

The number pipe defines grouping and sizing for numbers. See the following syntax:

{{EXPRESSION|number[:digitInfo]}}

Chapter 30

221

Using Built In pipes and Parameterized Pipes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

In this case, the EXPRESSION is a model property number to be displayed, and the
digitInfo has the following digit formats

{minIntegerDigits}.{minFractionDigits}-{maxFractionDigits}

This expression has the following:
•	 minIntegerDigits: 	 The minimum number of integer digits

to use. The default is 1.
•	 minFractionDigits: The minimum number of digits after the

fraction. The default is 0.
•	 maxFractionDigits: The maximum number of digits after the

fraction. The default is 3.

There is a decimalValue property declared in the component class with a hard-coded
value as 2000.23. We will use this property for databinding on the view as seen in
the following listing:

Listing 30.5: Using number pipe

Here number pipe has been used with formatting as ‘.5-5’. After viewing it in browser,
the output will be as follows:

Figure 30.2: The output of Number Pipe with formatting .5-5

The Original value 2000.23 is displayed as 2,000.23000 (with 5 digits after the decimal
point).

THE PERCENT PIPE

The percent pipe is derived from the number pipe, hence it retains all the formatting
features of it. This pipe formats the output in the local percent format. The syntax of
using percentage pipe is as following:

222 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

{{EXPRESSION|perent[:digitInfo]}}

The following listing shows how to apply the percent pipe:

Listing 30.6: Using percent pipe

There’s a value property defined in the component class with the default as 0.2421455.
After applying the percent pipe in Listing 30.6, the output will be as shown in
Figure 30.3:

Figure 30.3: The output of the percent pipe

The first output displays the conversion of the value in local percent format, whereas
the second output uses the formatting digits from the number pipe.

THE CURRENCY PIPE

The currency pipe is used to format the number in a local currency format. The local
currency name can be passed as a parameter to the currency pipe, hence we can use
this pipe as a parameterized pipe. Since this pipe is derived from the number pipe,
the same digit formatting can be used. The syntax for the percent pipe is as follows:

{{EXPRESSION|currency[:currencyCode[:symbolDisplay[:digitInfo]]]}}

In this syntax, the currencyCode is the ISO 4217 country code for the currency e.g.
for US dollar we will use USD, and for Euro, we will use EUR. The symbolDisplay is a
Boolean field indicating whether to use currency symbol e.g. $ or €, or use country
code e.g. EUR or USD.

Chapter 30

223

Using Built In pipes and Parameterized Pipes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

In the component, there’s an income property with value as 45.896. This property
will be used in the View as shown in listing 30.7.

Listing 30.7: Using currency pipe

As you can see, the currencyCode and symbolDisplay are passed as parameters to
the currency filter. The output of the filter is as shown in Figure 30.4:

Figure 30.4: Output of the currency pipe

The slice pipe

The slice pipe is equivalent to the Array.prototype.slice() function of Array object in
JavaScript, or like String.prototype.slice() which is used to slice a collection or string
data. This pipe is more useful when we want index based data slicing before showing
it on the view as output. The syntax of the slice pipe is as follows:

{{EXPRESSION|slice:start[:end]}}

While using slice pipe, the start index is mandatory, whereas the end index is
optional. The default value for the end index is the last index of the input value of
the EXPRESSION.

224 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

In the component, declare a name property and names array property as shown in
listing 30.8:

Listing 30.8: string and array declaration

The slice pipe is used for displaying desired output of these properties.

The following HTML listing shows the use of slice pipe:

Listing 30.9: Using slice pipe

Here start index and end index have values as 1 and 10 respectively for the name
property. The ngFor directive has been used for slicing names array with start and
end index as 2 and 4. This results to the following output:

Figure 30.5 Output of the slice pipe

The slice applied on string Mahesh IT Services with start index as 1, and end as 10
will return ahesh IT . The names array will be sliced from the start index.

The date pipe

The date pipe is used to format a date value as string based on the request format,
which is passed as a parameter to it. The zone for the date and time is based on the
settings of the end-user’s machine settings. Here’s the syntax of the date pipe

Chapter 30

225

Using Built In pipes and Parameterized Pipes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

{{EXPRESSION|date[:format]}}

The format value is used to display the date with specific local format. The various
formats available are as follows:

•	 ‘medium’
•	 ‘short’
•	 ‘fullDate’
•	 ‘longDate’
•	 ‘mediumDate’
•	 ‘shortDate’
•	 ‘mediumTime’
•	 ‘shortTime’

Listing 30.10 uses the date pipe on the joiningDate property of the component.

Listing 30.10: Using date pipe

226 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The following image shows the output of the date pipe:

Figure 30.6: Output of the date pipe

The JSON pipe

This is the simplest of all pipes in Angular 2. This pipe accepts an object, and outputs
it in JSON format. The JSON pipe has the following syntax:

{{EXPRESSION|json}}

In the component, there is a product property as shown in listing 30.11:

Listing 30.11: Product Object declaration

Chapter 30

227

Using Built In pipes and Parameterized Pipes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

This property is used in an expression on the View as shown in Listing 30.12:

Listing 30.12: Using json pipe

In the output, the product will be JSON formatted as shown in the following image:

Figure 30.7: The output of the json pipe

Dynamically changing pipe

We can dynamically change a pipe applied on a property bound to the UI. In the
component class, declare an isShortDate Boolean property and a joiningDate string
property. For the joiningDate, we can now toggle through the format value for the
date pipe.

Listing 30.13: Code to change and apply date

Use the applyDate function to toggle the format value of the date filter, using change-
Date property parameter on the date pipe. See Listing 30.14:

228 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 30.14: Using dynamically changing pipe

View the page in the browser, the default result will be as follows:

Figure 30.8: Dynamically changing pipe

By default, it outputs the short date. Click on the Change Date button, and as a result
of the dynamically changing pipe, the output will change to the following:

Figure 30.9: Output of the dynamically changing pipe

This output as seen in Figure 30.9 now displays the full date.

Conclusion

Pipes in Angular 2 is a powerful feature to define data databinding more effectively.
Pipes allow us to filter the outcome of our expression on the View by applying trans-
formation to display data in better ways.

229Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

31
Angular 2 Custom Pipes

IN CHAPTER 30, WE examined built-in pipes in Angular 2. Pipes offer a powerful
mechanism to transform data, leading to a better UI experience. In Angular 2, we can
even define custom pipes to provide custom transformation.

In this chapter, we will implement a custom pipe to filter data from an array bound
to the view. The @Pipe metadata decorator is used to create a custom pipe and the
name of the custom pipe is passed to this decorator. The pipe class implements the
PipeTransform interface, which provides the transform method. This method must
be implemented to write logic for the custom pipe.

The transform method accepts the value to be processed as an input parameter.
The value of the parameter is used for implementing logic of the custom pipe. The
transform method can be implemented without implementing the PipeTransform
interface in custom pipe. But implementing this interface gives tooling support for
the signature of the transform method, which can be quite useful in large projects.

We will use the code from the previous chapter for implementing a custom pipe. In
the project, add a new file named custom.pipe.ts. In this file, add the following code
shown in listing 31.1:

Listing 31.1: The code for custom filter

230 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

This code uses the Pipe decorator productFilter. The ProductPipe class implements
PipeTransform interface to act as a pipe. As mentioned, implementing the PipeTrans-
form interface is optional, but it is good to implement it as VS Code provides tooling
support for the method transform. This pipe class implements the transform method,
which accepts the value of type any and args of type string array. The code reads
the ProductName property value matching with the value parameter, and returns
all matching occurrences from the string array.

Add a new file applicationcomponents.ts in the app folder with the following code:

Listing 31.2: The component code

As shown in listing 31.2, the Component class defines a products array. To be use the
custom pipe in the current application, import it in the application module. In the
app folder, add the main.ts file with the following code:

Chapter 31

231

Angular 2 Custom Pipes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 31.3: Importing required dependencies and custom pipe

The code shown above imports the custom.pipe file and uses it in the declaration
of the NgModule using the following statement:

Listing 31.4: Declaring custom pipe in NgModule

Add a new html file in the app folder of name app.html with the following HTML
markup:

Listing 31.5: Using custom pipe

Listing 31.5 demonstrates how to use the custom pipe prodFilter on the table row,
which is generating rows based on the products array. This pipe accepts a parameter
as a value entered into the input text element, with the variable as #prodFilter. The
value in the input text element is read when the keyup event is fired.

232 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Run the application from the command prompt using the following command:

npm run start

Enter the following URL in the browser:

http://localhost:3000

Figure 31.1 shows the following output:

Figure 31.1: The first output

Enter some data in the textbox, for example: de, and the following result will be displayed:

Figure 31.2: Output after execution of the custom pipe.

Conclusion

Custom pipes allow developers to implement their own logic to manage the output
effectively, and as per the business requirements.

233Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

32
Using Custom Components in

Angular 2 Components and Services

CHAPTER 31 EXPLAINED HOW to create and use custom pipes in Angular 2.
With the help of pipes, data can be presented in an effective manner to the end-user.
Although pipes can be used in a user interface for presenting data for databinding,
they can also be used in components and services explicitly. The advantage is that
the application can reuse the functionality of a pipe at various places to avoid the
code repetition.

This chapter uses the custom ProductPipe created in Chapter 31. This pipe provides
data filtration based on the name of the product. The custom pipe implements
the PipeTransform interface its transform() method. This method contains logic for
operations to be performed by the custom pipe.

NOTE: While using custom pipe explicitly in Angular 2 com-
ponents and services, the transform method must be called
explicitly.

Using a Custom Pipe in Component

Open the code from \Chapter 31 in Visual Studio Code and review the code for the
ProductPipe. Since the custom pipe is used for filtering products, rename the file
name custom.pipe.ts to product.pipe.ts. Since the ApplicationComponent is going
to use the custom pipe, the code must be modified in the application.component.ts
as shown in listing 32.1:

234 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 32.1: The ApplicationComponent code

The code imports product.pipe to use the ProductPipe class. In the component class,
the property filterKey is declared as a string. This property will be used to push the
ProductName through an array to the transform method of the ProductPipe class. The
filterPipe property is declared of the type ProductPipe, which will be used to access

Chapter 32

235

Using Custom Components in Angular 2 Components and Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

ProductPipe methods explicitly in the component. tempProducts is a Product array
used to store Products information.

In Listing 32.1, the filter() method declares a string array of the name args. This array
contains each character of the ProductName entered using the filterKey property, e.g.
if the ProductName is ‘router’, then the args will be as following:

This array will be passed as an input parameter to the transform method of the
ProductPipe, along with the products array parameter. The transform method will
be executed if the filterKey has a value, and will return an array of filtered products
based on the matching character from the args array; otherwise, the products array
will contain data from the tempProducts array.

Since a custom pipe is used in the component, the app.html must use it in a table.
The app.html needs to be modified as shown in listing 32.2:

Listing 32.2: The app.html

236 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The <input> element is bound with the filterKey property of the ApplicationCom-
ponent. The filter() method of the component is bound to the keyup event of the
<input> element using event binding.

Since the code uses the data-binding features, the application must use FormsModule.
To use the FormsModule, modify package.json for installing @angular/forms depen-
dencies. The systemjs.config.js file must be modified to use forms module as shown
in Chapter 17.

To run the application, right-click on index.html and select Open in Command Prompt.
Enter the following command in the command prompt:

> npm run start

To view the result, enter the following url in the browser:

http://localhost:3000

The result will be displayed as follows:

Figure 32.1: List of products

Enter the ProductName in the Text box with the label ‘Enter Product Name’. For instance,
enter ‘d’ in it and the Product will be filtered as shown in Figure 32.2.

Figure 32.2: List of Products filtered based on value in TextBox

When the input is entered in the textbox, the keyup event is fired, calling the filter()
method of the component. The method filters products with names, starting with
the string entered in the textbox.

Chapter 32

237

Using Custom Components in Angular 2 Components and Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Using Custom Pipe in Service

To reiterate, a custom pipe may also be used in a Service. Chapters 25 and 27 explain
the use and importance of Angular 2 Services.

In the app folder, add a new file named productservice.ts. This file will contain the
products array and a method filterProducts() to filter the products by using the custom
pipe. The code for this service is shown in listing 32.3.

Listing 32.3: Product Service code

238 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The code in the service is very similar to the code of the Listing 31-1. The filterProducts()
method calls the transform() method of the ProductPipe to filter products based on
the ProductName, and returns the products array after finding the matching products.

The service must be called from a component. In the app folder, add a new file named
app.callservice.component.ts with the code shown in listing 32.4.

Listing 32.4: The component calling service

This code imports the ProductService and injects it in the constructor. The constructor
calls the products array property from the service and stores all products from the
service in the products property, declared in the component.

The filter method of the component class calls the filterProducts method of the service
by passing the filterKey property value to it. This filterKey passes the ProductName to
the filterProducts method, which will further filter products by matching ProductName
to the filterKey and returns products.

In the app folder, add a new file named appcomponentservice.html with the same
markup as the app.html file in listing 32-2. This html file is the template for the
app-component-service selector declared in the ProductCallServiceComponent.

Chapter 32

239

Using Custom Components in Angular 2 Components and Services

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Since the application has two components, main.ts must be modified to load both
components as shown in listing 32.5:

Listing 32.5: main.ts with multiple bootstrap components

Listing 32.5 loads the components ApplicationComponent and ProductCallService-
Components when the Angular 2 application is bootstrapped using the module
AppModule.

The code in the <body> tag of the index.html which will use the multiple component
selector is as shown in listing 32.5.

Listing 32.5: index.htm

This piece of code will load html files assigned for the templateUrl property of the
component.

Run the application in the browser. The result will be shown as in Figure 32.3.

240 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Figure 32.3: The Use of all components

Enter the ProductName in the Textbox labeled with ‘Enter Product Name’ under the
header ‘Angular Using Custom Pipes in Service’. If the textbox contains character ‘r’,
then all products starting from ‘r’ will be shown:

Figure 32.4: The custom pipe in service

Conclusion

The use of custom pipes in components and services allows developer to reuse their
own logic effectively.

241Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

33
Understanding Routing

A SINGLE PAGE APPLICATION (SPA) requires just one page load, and thereafter
all required elements can be loaded dynamically onto the page without the need
to leave the page. SPA consists of many functionalities with limited or light-weight
access to the server. All of the tasks are performed in a single page, without asking
the server for a new page to render.

Sometimes presenting all of the functionalites on the same view without a change in
the url can be confusing and may reduce the usability of the application. Client-side
routing addresses this problem by providing a way to navigate between different parts
of the application. With client-side routing, one can switch between different views
without asking the server to refresh the whole page. The URL of the page changes
when a user switches between the views. This URL can be bookmarked and one can
return to the client-side rendered view directly, without having to navigate to this
page again. When the context switches from one view to the other, an SPA sends
requests for the template and related files of the new view through AJAX requests.

This chapter will explain how Angular 2 supports routing using a basic example. By
the end of this chapter, you will be able to configure simple routes, creates links to
the routes, and use them.

To follow along with this chapter, you can start with the development environment
created in chapter 5. To this, install the @angular/forms package using the following
command:

> npm install @angular/forms@2.0.0 –save

It also needs a couple of packages for the server. The following command installs them:

> npm install co-body koa-route --save

The form package and the http and router packages have to be registered with
SystemJS to be able to refer it in the application. Add the following entries to the
map configuration in the file systemjs.config.js:

"@angular/http": "node_modules/@angular/http",

242 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

"@angular/forms": "node_modules/@angular/forms",

"@angular/router": "node_modules/@angular/router"

And the following entries to the packages section in the file systemjs.config.js:

"@angular/http": { "main": "bundles/http.umd.js", "defaultExtension": "js" },

"@angular/forms": { "main": "bundles/forms.umd.js", "defaultExtension": "js" },

"@angular/router": { "main": "bundles/router.umd.js", "defaultExtension": "js" }

Copy the files server.js and books.json from the downloadable code of this chapter
and paste them in the folder where you have set up your project.

How to use Routes in Angular 2

To use routing in Angular 2, the routing module must be installed using npm. The
following command installs this package:

> npm install @angular/router

The package is already installed in the setup project we created in Chapter 5. The
set of routes of the application has to be added to a list. This list must be passed to
RouteModule. Listing 33.1 shows the syntax of creating the routes:

Listing 33.1: Configuring routes in Angular 2

Notice that the routing variable is made constant in the above snippet. It is done to
prevent any modifications to the routes.

As shown here, every entry in the routes array is an object with two properties con-
taining relative paths to reach the route as well as the component to be rendered in
the route. The last statement in listing 33.1 creates a module from the list of routes.
The application module has to import this module. Upon importing this module, the
application gets access to all exported members of the RouteModule, and the routes
defined in the above snippet are configured for the application. Listing 33.2 imports
the routing module inside application module:

Chapter 33

243

Understanding Routing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 33.2: Importing routing module

As an Angular 2 application starts with a component, the first component must
have a placeholder in its template. The placeholder is a router-outlet component;
this component is defined in the router module and is available after importing the
routing module.

These are some basic steps to get started with routing in Angular 2. Let’s build an app
to use these features and to explore several others.

Building an App Using Routing

BUILDING COMPONENTS AND SERVICE

Looking at the example of a book shelf, the application consists of two routes: one
to view the list of books and another to add a new book. The application interacts
with a REST API built using Koa.js. Refer to the sample code of this chapter to view
the APIs. An angular 2 service should interact with this API. Listing 33.3 shows code
of the class BooksService, which interacts with the APIs:

Listing 33.3: Code of BooksService, to be placed in the file

244 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

To represent the structure of a book in TypeScript, we need a model class for book. The
following snippet shows the Book class, it has to be added to the file book.model.ts:

Listing 33.4: The Book class

The first page of the application has to display the list of books available. A component
is required to consume the BooksService to get the data and add it to the compo-
nent instance, to make it accessible to the UI. Add a file named books.component.ts.
Listing 33.5 shows the TypeScript class of the component, it has to be added to the
newly created file:

Listing 33.5: Code of BooksComponent

Chapter 33

245

Understanding Routing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The template of this page has a table displaying a list of books. The ngFor structural
directive is used to iterate through the list of books and display them in different rows
of the table. Listing 33.5 shows the markup of the template file:

Listing 33.6: Template of BooksComponent

The other page in the application will add a new book. This page will have a form
with four fields, accepting values for different properties of the book. It uses the
BooksService to call the Koa.js service to add the book. Listing 33.7 shows the class
of the component:

246 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 33.7: Code of AddBookComponent

The constructor of the AddBookComponent accepts the Router service in addition to
the BooksService. This service will be used later in the next section.

As this page has a form, the data received from the user must be validated to prevent
insertion of invalid data in the service object. This component uses the template-driven
forms approach for the form and their validations. Please refer to Chapter 26 to learn
more about template-driven forms. The data received in this component needs the
following set of validations:

•	 Required field validations on all the fields
•	 Pattern validation on price and published year fields, to

check if they are numeric

Listing 33.8 shows the template of the component:

Chapter 33

247

Understanding Routing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 33.8: Template of AddBookComponent

The last component to add to the application is the application component, which
will be used to start the application. This component will have a navigation bar and
will use routing to add a placeholder for the component to be loaded in it. Listing 33.9
shows the code of the application component:

248 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 33.9: Code of AppComponent

Adding Routing to Book Shelf

Next, add routes to the application. The demo application needs two routes for the
two pages. Add a new file to the application and name it app.routes.ts. Add the code
shown in listing 33.10 to this file:

Listing 33.10: Routes

Note that the first route added to the array App_Routes doesn’t have a path. Angular
will render the component configured in this route when no route path is specified
in the URL. The module created from the routes list is exported, so that it can be
registered with the application’s module. An application module has to be created
to start the application. Listing 33.11 creates this module:

Chapter 33

249

Understanding Routing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 33.11: Application module

If you save all of the files and run the application, you will receive an error stating:
Error during instantiation of LocationStrategy. To fix this, add a base path URL to the
head section of index.html file. The following snippet shows this statement:

Upon refreshing the page after making the above change, the page renders a list of
books. Figure 33.1 shows this:

Figure 33.1: Books list on a browser

250 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

To view the add book page, change the route to http://localhost:3000/addBook.
Changing the URL manually is an error prone process and it isn’t user friendly too.

Let’s add links to the AppComponent template to make this easier for us. Listing 33.12
shows the modified template of AppComponent:

Listing 33.12: Navigation bar

Note the unordered list inside the third div element in the template. It has an unordered
list with an anchor element specified in each of the list items. The anchor element
has the routerLink directive, which is defined in the @angular/router module. This
directive accepts a path and parameters to be supplied to the path, and also constructs
the href attribute of the anchor element. Chapter 34 will cover use of parameters in
routes. Now, if you run the application, you will see the navigation bar with the two
links and you can click the links to switch between the two routes.

Figure 33.2: Navigation bar

In the add book page, redirect the user to books list page after adding a book. This
can’t be done in the view using the routerLink directive, as the book must be added to
the list before redirecting (this can be achieved using the Router service of @angular/
router module). This service is already injected into the component. With a method
named navigate, a route can be passed to this method in the same format as we
assigned the routerLink directive.

The navigation should happen after the book is added to the service. The statement
for navigation has to be in the callback of the subscribe method. Listing 33.13 shows
the modified submit method:

Chapter 33

251

Understanding Routing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 33.13: Submit method with route redirection

Whenever a new book is added, the user is redirected to the list page.

Conclusion

Routing is a way to keep the application simpler and adds richness to the user expe-
rience. The next chapter will cover a several more features of routing in Angular 2.

252 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

34
Parameterized Routes and Creating
Sub-Routes

CHAPTER 33 EXAMINED HOW Angular 2 supports routing with some examples
of using simple routes. These routes are made more dynamic by adding parameters.
Angular 2 also supports nested routes, where a rendered component has a placeholder
to load another component inside itself. This chapter focuses on these features.

To follow along with this chapter, keep a copy of the sample built in Chapter 33. This
chapter extends the Books List sample built in the last chapter to include parameterized
and nested routes, and it adds, reviews, and displays the list of reviews to demonstrate
the features of routing. Before getting started, add a new folder inside the app folder
and name it reviews. The steps discussed in this chapter will add code in this folder.

Parameterized Routes

Let’s add reviews to the books. Every book may have a set of reviews. Each entry in
the review will have name of the reviewer, rating (out of 5), and a comment. The table
displaying a list of books will have a link that directs the user to a different page to
display the list of reviews of that book. To do this, the reviews page needs the id of the
book, and the books list page will pass the book id to the reviews page. The reviews
page will read the book id from the UR and use it to call an API to obtain the reviews
of that book.

If you need the list of books with their reviews and APIs to retrieve and add reviews, you
may refer to the server.js and books.json files of the sample code provided with this chapter.

First, add a method to the BooksService to get details of a book when the id of the
book is supplied. The book object returned from the API will contain the list of reviews
in it. Listing 34.1 shows this method:

Listing 34.1: Method to get details of a book

Chapter 34

253

Parameterized Routes and Creating Sub-Routes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

To represent the model of a review, the application needs a TypeScript model class.
Add the following class to the file book.model.ts:

Listing 34.2: Review class

The application needs a component to display the list of reviews of a book. This
component will read the id of the book from the route and use it to call the above
method. Listing 34.3 shows the code for the ReviewsComponent class, add this code
to a new file named reviews.component.ts in the reviews folder:

Listing 34.3: Code of ReviewsComponent

The ActivatedRoute service (used in the above class) provides access to the details of
the current route. It provides access to the values passed as parameters to the current
route through the Observable property params. The ngOnInit hook in listing 34.2 reads
value of the parameter named id.

The template of this component will loop through the reviews and will display details
of every review. Listing 34.4 shows the template:

254 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 34.4: Template of ReviewsComponent

To reach this component, the application needs a route. Modify the routes list in the
file app.routes.ts as following:

Listing 34.5: Modified routes list

The third entry in the App_Routes array in listing 34.3 adds the parameterized reviews
route. The syntax for passing a parameter to the route is by using a colon (:) in front
of the name of the parameter. Any value passed after /reviews in the URL is treated
as value of this parameter.

Now you can change the URL in the browser to http://localhost:3000/reviews/1 to see
the list of reviews added for the first book and change the value of id to list reviews
of other books.

Figure 34.1: Reviews page

Chapter 34

255

Parameterized Routes and Creating Sub-Routes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Finally, add a link to the books list table to navigate to the reviews page of the book.
This doesn’t require any changes to the component class. A link must be added in
the books list table. Listing 34.6 shows the anchor element to be added to the row
of the table:

Listing 34.6: Anchor tag with routerLink

And listing 34.7 shows the modified template of the books.component.html file:

Listing 34.7: Modified template of BooksComponent with a link to reviews page

Now you should be able to navigate to the reviews page using the link in the table.

Adding Nested Routes

Now that the application lists the reviews posted against a book, it would be optimal
for it to provide a way to add reviews, too. As viewing the list of reviews and adding
a new review to a book are two different pieces of functionality, it would be better
to make them nested routes under reviews.

256 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

When a user clicks the reviews link on the books list table, the page will navigate to
the reviews section, which will have two sub routes:

•	 Reviews list
•	 Add new review

The ReviewersComponent created in the previous section will become a host of routes
and will have a placeholder to display one of these views in it. The nested routing in
Angular 2 needs a submodule with the module-specific routes defined in the module.
This module will then be loaded from the route config of the main module when the
root route corresponding to the submodule is loaded.

Create a separate folder under the app folder and name it reviews. This module will
hold functionality of the reviews section. Move the file containing code of Reviews-
Component to this folder.

Before defining routes and the sub module, let’s build the required components and
modify the reviews component.

Listing 34.8: Code of ReviewsListComponent

Most of the code of this component is the same as the ReviewsComponent written
earlier. One significant difference is in the way the value of the book id from the URL

Chapter 34

257

Parameterized Routes and Creating Sub-Routes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

is fetched. Note the first statement in the ngOnInit lifecycle hook. It reads the value
of the book id from the parent route and converts it into a number using the plus
sign. The template of this component has a div element iterating over the reviews
and displaying different properties of the review object.

To add a new review, a method must be added in the BooksService to call the add
review service. Listing 34.9 shows the method:

Listing 34.9: BooksService updated with a method to add a review

The component to add a new review will have a form accepting the three fields of
the review object. It will call the addReview method of the service to add the review
to the book. Listing 34.10 shows the component class:

258 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 34.10: Code of AddReviewComponent

Listing 34.11 shows the template of this component. It has a template-driven form
validated using the validation directives in Angular 2.

Chapter 34

259

Parameterized Routes and Creating Sub-Routes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 34.11: Template of AddReviewComponent

After the components are ready, it is time to define the routes. As these routes will be
children of the ReviewsComponent, the route configuration object must mention the
ReviewsComponent and define the routes as such. To keep the routing files simpler,
add a new file to the reviews folder named reviews.routes.ts and add the code shown
in listing 34.12 to it:

260 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 34.12: Routes of reviews

Notice the way the routes are defined in the listing 34.10. The route configuration
says the main component for the sub-route is ReviewsComponent and then it lists
the nested routes in the children array. This means that ReviewsComponent will have
placeholders for the children routes. Then a module is created for the child routes and
is exported from the file. This module will be imported in the sub-module of reviews.

The ReviewsComponent needs to be updated to play the role of an entry point for
these sub-routes. This component will not show the list of reviews, instead it will
have the header of the page and will have navigation links to switch between the
reviews list and add review views. It will also have a router-outlet component wherein
the sub-routes will be rendered. Listing 34.13 shows the modified template of the
ReviewsComponent:

Chapter 34

261

Parameterized Routes and Creating Sub-Routes

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 34.13: Modified template of ReviewsComponent

The last thing to be done in the reviews folder is to add the sub module. This module
will be responsible to register the components of reviews section and to import the
route module created earlier. Add a new file to the reviews folder and name it reviews.
module.ts. Listing 34.14 shows the code of the to be added to this file:

Listing 34.14: Code of ReviewsModule

Everything is ready in the reviews folder and it needs to be linked in the main applica-
tion module. The reviews module must be linked in the reviews route of the application.
Modify the route configuration in app.routes.ts as shown in the listing 34.15:

262 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 34.15: Modified routes in app.routes.ts

If you run the application now and click on reviews of one of the rows in the table,
you will see a view similar to the following figure:

Figure 34.2: Reviews page

Conclusion

A good routing system helps make the application richer and more useful. Angular 2
comes with a flexible and feature rich router to solve most of the problems with
routing in SPA. Chapters 33 and 34 explained the process of creating and using simple,
parameterized, and nested routes.

263Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

35
Angular 2: Unit Testing Framework

TESTING YOUR CODE BEFORE it is moved to production is important. You should
be certain that each unit of code is successfully executed as per the logic defined.

This chapter will explain the features offered by Angular 2 for implementing Unit Testing.

Similar to Angular 1, Angular 2 was designed with testability in mind, and it provides
multiple options for unit testing. Jasmine is a behavior-driven JavaScript framework for
testing JavaScript code and does not rely on browsers, DOM, or any JavaScript framework.
It provides an easy syntax for writing scripts. In Jasmine, the test starts from the global
function describe. This function accepts two parameters: a string (which is the name of
the spec), and the function (which is a block of the spec suite). This function contains the
code for the test initialization, setting up dependencies (beforeEach) and the tests (it).

beforeEach() accepts a function which can be used to setup the objects required
for a group of tests. For example, if an Angular service needs to be tested then the
beforeEach block creates an instance of the service.

The it() function is used to write the code for testing. This function accepts two
parameters: a string (which is the name of spec), and the function (which contains
the logic for the test). Based on the unit testing requirements, this code may call the
actual object of the function to be tested, or may use a mocking framework.

The outline of the code is as following:

Angular 2 provides an out-of-box support for testing by providing Angular 2 testing
libraries. These libraries are provided in separate packages and can be used for testing
Angular 2 Component, Services, etc. Package.json needs to be modified for testing
as shown in listing 35.1:

264 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 35.1: package.config for specifying packages needed for testing

The jasmine-core and jasmine-spec-reporter will install required packages for
Jasmine framework used for testing. These packages can be installed for the current
project using the following command:

npm install

Once these packages are installed, the systemjs.config.js file must be modified for
defining the library paths for testing. The following snippet provides a listing of all
testing libraries from the systemjs.config.js file.

Chapter 35

265

Angular 2: Unit Testing Framework

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 35.2: The Angular 2 testing libraries path (highlighted)

The application needs these libraries for writing tests. To test Angular 2 code, the
TestBed class must be used. This class is provided in @angular/core/testing pack-
age and uses BrowserTestingModule class which is available in @angular/plat-
form-browser-dynamic/testing package. The TestBed class is used to initialize the
testing environment. A snippet of it is shown in Listing 35.3.

266 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 35.3: TestBed class to initialize the testing environment

While executing Component tests in Angular 2, the Component must be compiled
using the ComponentFixture class. This class is also provided in @angular/core/testing
package. The TestBed must configure testing module before compiling component,
which can be done using the static method configureTestingModule() of the TestBed
class. This method must be passed to the component declaration that’s being tested
and to dependencies of the modules which are used by the component. For instance,
if the component being tested is EmployeeComponent and it is using the directive
ngModel, then it requires FormsModule. In this case, the TestBed will initialize modules
as shown in the following listing:

Listing 35.4: The Initialization of Testing Module

In case of testing an Angular 2 Service that performs an AJAX call using the Http
service, the module configuration must include the service providers of Http and
MockBackend as shown in Listing 35.5.

Listing 35.5: module initialization in case of Http service testing

Chapter 35

267

Angular 2: Unit Testing Framework

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

If the test is written for the Component using an external Html containing a form, then
the external template must be first compiled using the TestBed.compileComponents()
method. In this case, the module initialization will be as per listing 36.6.

Listing 36.6: Module initialization in case of external html template in component

Once the module initialization is completed, the spec may be implemented using
it() function which sets the expectation for testing using expect() function. See
Listing 36.7.

Listing 36.7: The expect function in ‘it()’

A complete implementation of Angular 2 testing with Component Testing, Service Test-
ing, Http Service Testing, and Form Testing is forthcoming in Chapters 36 through 39.

Conclusion

This article explained the features provides by Angular 2 for unit-testing your appli-
cation using the Jasmine framework. Chapter 36 explains the steps of writing a unit
test for an Angular 2 component using Jasmine.

268 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

36
Angular 2: Simple
Component Testing

THIS CHAPTER’S FOCUS IS writing a unit test for an Angular 2 component using
Jasmine. The chapter is implemented from scratch, for simplicity, using Visual Studio
Code. (Note: The code for implementing server using koa is used as it is. See Chapter 5
for details.)

Our application needs package.json as shown in the following listing:

Listing 36.1: package.json with all required packages for the application

Chapter 36

269

Angular 2: Simple Component Testing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

As shown above, the application requires the Jasmine Framework (2.4.1 as of this writ-
ing) for writing unit tests for the application. Jasmine is a behavior-driven framework
for testing JavaScript code in web applications. This provides an easy way to write unit
tests on the code without requiring any other third party framework/library and DOM.

All of the above packages must be installed using following command:

npm install

In the app.component.ts file of the app folder of the application, the component
code is written as shown in Listing 36.2:

Listing 36.2: The component code

270 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The component seen in Listing 36.2 implements the OnInit interface and overrides
the ngOnInit() method. The component defines public members a,b, and c (the values
for a and b are set in the constructor). The ngOnInit() method contains logic for (a+b)
square. The add() method performs simple addition of two numbers. The component
defines template with inline HTML markup in it. This is an important step; if the
component does not define a template, then the test will be unable to create an
instance of the component.

The test must load required packages provided in the module @angular/core. In
Angular 2, every module has its corresponding testing module. Our unit test imple-
mentation must refer these modules. Refer to Chapter 35, which lists the required
modules to be loaded for testing.

The unit test logic is written in the app.component.spec.ts file as shown in Listing 36.3.

Listing 36.3: The code for testing

Chapter 36

271

Angular 2: Simple Component Testing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The code imports TestBed class from @angular/core/testing. This class is used for
initializing the testing environment and providing a mechanism to initialize test
environment using initTestEnvironment() function. This method uses Browser-
DynamicTestingModule class and platformBrowserDynamicTesting(), which
are used to load an instance of @NgModule created using PlatformRef class. The
configureTestingModule() method of TestBed class is used to create a module for
unit testing; it imports all providers, components, directives, and pipes required for
testing. The createComponent() method of TestBed class is used to compile a com-
ponent. It returns an object of generic ComponentFixture<ComponentType> type in
which the component’s instance is stored in the componentInstance property. The
createComponent() method of the TestBed class returns ComponentFixture object.

Jasmine provides describe(), beforeEach(), and it() functions to implement the testing
logic. The describe() method acts as an entry-point for testing where all declarations
are placed. The beforeEach() method is used to configure testing modules and for
importing all required dependencies. Once these dependencies are imported, the
component will be complied. This will return ComponentFixture instance from which
an actual instance of the component to be tested is retrieved.

Listing 36.3 contains two tests declared using the it() function: ngOnInitTest tests
the ngOnInit() method of the SimpleComponent, whereas addTest tests the add()
method of the same component.

To view the test results in the browser, the application contains simplecomponenttest.
html file with the code and references as shown in Listing 36.4.

272 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 36.4: The html code for test

Listing 36.4 shows all required references for Html testing of the component. This
imports @angular/core/testing and app.component.spec modules for execution. The
main.ts file contains the application module which is shown in listing 36.5.

Chapter 36

273

Angular 2: Simple Component Testing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 36.5: The main.ts code

Use the following command to run the server

npm run start

The test result can be viewed by entering following URL in the browser

http://localhost:3000/simplecomponenttest.html

The test result will be shown as displayed in Figure 36.1

Figure 36.1: Test Result

The result shows both tests are successful. In addTest if the res variable value is
changed from 30 to 40, then this test will fail as shown in Figure 36.2.

Figure 36.2: The failed Test

274 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

TESTING COMPONENT HAVING HTML TEMPLATE WITH DATABINDING

After completing the process of testing a simple component, what happens if the
component has an Html template with two-way databinding? In that case, the test
should be capable of parsing the Html template having databinding expressions in
it. Chapters from 16 to 20 discussed Databinding and the use of FormsModule to
execute ngModel property. If the component contains HTML template that uses the
directive ngModel, the testing module must import the FormsModule as well.

To implement Component Testing with HTML template, create a new application with
all the steps as in in listings 36-1, 36-3, and 36-5.

In the application, the Employee model class is created in employee.model.ts file as
shown in Listing 36.6.

Listing 36.6: Employee model class

The Employee model class will be used to accept Employee details.

The app.component.ts file contains the component as shown in Listing 36.7.

Chapter 36

275

Angular 2: Simple Component Testing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 36.7: Component with Html template having Databinding

276 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

This listing defines EmployeeComponent with an inline Html template. The template
contains <input> elements which are bound with the properties of Employee model
class using ngModel. The getTax() method calculates tax of the employee based on
the designation.

The app.component.spec.ts file contains the logic for testing as shown in Listing 36.8:

Listing 36.8: The component spec code for testing environment

Chapter 36

277

Angular 2: Simple Component Testing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

As seen in Listing 36-4, the code for Testing environment using TestBed is similar except
that the configureTestingModule() method has an additional line for importing
FormModule. The test getTax implements code for testing.

The test getTaxClickEvent sets salary and designation values for Employee object to
calculate tax. This test uses nativeElement property of the ComponentFixture class to
read the Button element from the HTML template using the querySelector() method.
querySelector returns an instance of the DOM element (in this case button). Using the
dispatchEvent() method, the click event of the button can be raised using code in
the test. Since the click event is bound with the getTax() function, it can be invoked
and executed using the detectChanges() function of the ComponentFixture class.

This is how the HTML template from the Component with its event can be tested.

The componentTest.html file is used for Html testing; this file will have a similar code to
in listing 36-5. When this file is viewed in browser using the URL http://localhost:3000/
componentTest.html, the following result will be displayed.

278 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Figure 36.3: The success Test for Component with Html template

If the configureTestingModule method does not import FormsModule, then the
following result will be displayed:

Figure 36.4: The failed test as a result of no import of FormsModule

The Test result clearly specifies that there are Template parse errors, and it is not
able to parse ngModel property.

Conclusion

The components are the basic building blocks of any Angular application and they
contain the logic that controls the way an application looks. So, it is important to make
sure that the component is tested for its logic. This chapter gave a basic overview of
getting started with testing the components.

279Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

37
Testing Angular 2 Service

CHAPTER 36 FOCUSED ON the use of Jasmine for testing Angular 2 components
and HTML template with an event. This chapter will examine the implementation
of Service Testing in isolation, and Component Testing having service dependency.

A component forms a major building block of Angular 2 applications. It is the com-
ponent which makes call to all external Web API/REST Services using an Angular 2
Service. In actual practice, the Angular 2 Service is not limited to making REST calls. It
can also contain the utility logic, which is not preferred to be written in an Angular 2
Component. The Service is injected into the Component using Dependency Injection.

Chapter 25 showed how to create an Angular 2 Service. This chapter will use a new
service. Listing 37.1 shows the code of TestService in the testservice.ts file.

Listing 37.1: The TestService code

This code contains two methods:

•	 getData() returns an array of strings.
•	 reverseString() accepts a string input argument and reverses it.

The TestService is injected in an Angular 2 component of the name TestComponent
of the app.component.ts file.

280 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 37.2: The Component class

Chapter 37

281

Testing Angular 2 Service

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The component is injected with TestService using constructor injection.

The Test for this component is implemented using app.component.spec.ts file as
shown in Listing 37.3.

Listing 37.3: The component testing code

282 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Since the component is dependent on the TestService, the MockTestService class
is created using the same signature as TestService. This mock class is used to mock
calls from component to the service. The configureTestingModule() method of the
TestBed class accepts the provider’s parameter, which is set to the TestService and
the useClass as MockTestService. Then, the mock object will be used while methods
from the component are called. Listing 37.4 shows the TestBed configuration.

Chapter 37

283

Testing Angular 2 Service

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 37.4: TestService passed to TestBed.configureTestingModule and Mock object(highlighted)

Observe the tests for getLength() and reverseName() method of the component class.

To execute the test, the project is added with servecomponent.html. This has code
similar to the one in Chapter 36 for test html page.

Run the application using following command:

npm run start

The html test can be seen using the following URL:

http://localhost:3000/ServComponent.html

The result will be as follows:

Figure 37.1: The test result

It’s important to note here that if the component is dependent on the service, then
the test must be provided with the service.

In Angular 2, it is important to write tests for isolated blocks of the application. It’s
better that the Angular 2 service is directly tested without writing tests for the com-
ponent. The advantage of this approach are: the test has more focus on each isolated
component, it is more productive, and chances of logical errors are reduced.

Isolated Service testing

Angular 2 Service can be used to contain utilities methods, as well as external calls
using Http dependencies. In such cases, separate tests can be written on the service.

284 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

This chapter discusses isolated service testing without having any dependency in it.
Service testing with Http dependency will be discussed in Chapter 38.

A service can be directly tested using Jasmine framework and without using an
Angular 2 testing library. It is an individual’s choice to decide whether to use Angular 2
testing library or not. The code in the following listing implements test for the Test-
Service methods—with and without Angular 2 testing library.

Listing 37.5: The testservice.spec.ts file with the service testing code

The code shown in Listing 37.5 has a test case (getDataTest) which does not use the
Angular 2 Test library. This test uses Jasmine to creates an instance of the TestService
class and call its getData() method.

The testwithangular2lib test uses Angular 2 library. It uses the TestBed class to provide
the TestService to it. inject() is used to call the method from the TestService asynchro-
nously. The reverseSting() method is called and executed asynchronously.

Chapter 37

285

Testing Angular 2 Service

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

To run the test, use servicetest.html, which is similar to servecomponent.html. The
only change in this html file is shown in the following listing:

Listing 37.6: The html file Isolated service testing

Run the server using following command:

npm run start

The test can be viewed using the following URL:

http://localhost:3000/servicetest.html

While creating Angular 2 apps, Service testing is important. It is best to implement
a test for the component having dependency on a service, and to perform isolated
service testing so that logical errors can be reduced.

Conclusion

Services hold most of the business logic and data operations in an Angular application.
It is very important to test the logic in the services to avoid any kind of business and
data related bugs in the application. This chapter gives you a good start with testing
services. You can build on top of these ideas to test the services in your applications.

286 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

38
Testing Http Request

SERVICES ARE USED TO contain utility methods and to make external Http calls.
Chapter 37 explained the testing of a component using service dependency, as well
an isolated test for Angular 2 service with and without the Angular 2 Testing library.

This chapter looks at another use case of Angular 2 Service testing, which makes a
Http call to REST API or Web API.

Angular 2 uses the Http module for creating an Injectable service. While writing
tests for the service, it is important that the test code should not make an XHR call.
Instead, it should respond with a set of mock data. The Angular 2 team has written
the MockBackend module, which can be used to mock the HTTP calls and provide
a static response to the requests.

In Angular 2, the MockBackend and MockConnection modules are provided in @
angular/http/testing package.

This chapter uses the code sample of Chapter 29 to test Http calls. The testing code
is written in bookservice.spec.ts. The test code must import modules as shown in
the following listing:

Listing 38.1: The list of modules needed for test

The Http module is used to represent the Http call made from the service, to external
services. The MockBackend module is used to mock the backend. The MockConnec-
tion represents the state of the XMLHttpRequest.readyState value. The Response-
Options module represents the body of the response, which may be a String, Object,
ArrayBuffer or Blob.

Chapter 38

287

Testing Http Request

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The TestBed environment for the test is set using the code shown in listing 38.2.

Listing 38.2: The TestBed environment set

The test using Jasmine functions is implemented using the code in Listing 38.3:

Listing 38.3: The Http call test

288 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The code shown in Listing 38.3 declares the ResponseOptions object. This object
defines the expected response. The data array is declared to contain the data value
against which the response will be compared. The beforeEach function configures
the required providers using configureTestingModule function. These providers
are: Http, MockBackend, BaseRequestOptions, and BookService. The provider sets
dependency on the MockBackend and BaseRequestOptions modules to mock the
Http requests.

Chapter 38

289

Testing Http Request

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Since the method to be tested makes an HTTP call using an Angular 2 service, the it()
function performs an asynchronous test by injecting BookService and MockBackend
modules. The function subscribes to the backend connection using MockConnection,
and sets the ResponseOptions with the expected response body. The MockConnection
object further mocks the response using its mockRepond() method. Finally the
getBooks() method from the service is called, and expectations for the test are set.

Add httptest.html to the project with the following code:

Listing 38.4: The Html file for testing result

Run the application using the following command:

290 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Npm run start

The Test can be viewed in the browser using the following url:

http://localhost:3000/httptest.html

The result is shown in the following image:

Conclusion

Data is the most important thing a user would want to see in an application and calls
to HTTP APIs is the most widely used technique to get this data. These calls are crucial,
as they result into the content that gets displayed to the users. To ensure that the
right APIs are called, they have to be tested. Angular’s MockBackend helps in doing
that. This chapter demonstrated how the HTTP calls can be tested using MockBackend.

291Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

39
Model Driven Form Testing

FORMS ARE AN IMPORTANT component of any Web Application. Forms contain
the UI and Validation rules to ensure that the end user can easily interact with a web
application and enter data in the desired format.

Angular 2 forms, validations, and custom validations have been reviewed in Chapters 21
through 24. This chapter will focus on testing in Model-driven forms.

Model-driven forms provide isolation between Model-Properties and the Form UI
elements. This feature makes the form more testable. Tests can be written on the form
logic and the form can be tested against its ‘valid’ and ‘invalid’ status.

The FormGroup object, discussed in chapter 22 through 24, contains collection of
FormControl. This object contains mapping between DOM elements and the model
properties, along with validation rules. The mapping is handled using the formCon-
trolName attribute of the DOM elements. Using this approach, the model validation
code is isolated from the DOM to make it more testable.

This chapter builds on Chapter 24. Chapter 24 has a model class defined in employee.
model.ts.

Listing 39.1: The model class

The EmployeeComponent has an ngOnInit() method, which declares a FormGroup
instance using FormControl collection, and validation rules as shown in the following
listing.

292 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 39.2: The EmployeeComponent with validation code

……….

Please refer to Chapter 24 for more information on the EmployeeComponent class.

To load Jasmine packages for the testing application, package.json must contain the
following dependencies shown in Listing 39.3:

Listing 39.3: The modification in package.json

The project contains the employee.html file. This defines the form data, bound with
model properties, and their validation error messages. The EmployeeComponent
uses the employee.html and the @Component’s templateUrl property. While testing
this component, the test must compile the html template first and then create the
instance of the component class.

The project will be added to the employee.component.spec file; it will contain the
required logic for the form validation.

The test must import required modules from Angular 2 test libraries. These modules
will be used to read DOM elements from the html form. To successfully test the form
with databinding, the test code must import Angular 2 forms package.

The following listing shows modules and packages imported in the test file:

Chapter 39

293

Model Driven Form Testing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 39.4: Packages imported in employee.component.spec.ts file

The following listing shows test environment initialization using the TestBed class:

Listing 39.5: The test environment setting

The EmployeeComponent uses employee.html as an external template. The test must
first compile the template, and then the Component can be instantiated. The template
compilation is performed asynchronously using the compileComponents() method
of the TestBed class. The TestBed class must import all required modules which are
used by the html template. Once the compilation is done successfully, the component
can be instantiated. The following listing contains the code for compilation, and the
component instance creation.

Listing 39.6: External Template compilation and component instance creation

Since this chapter is scoped for testing Model-Driven form, in the test case the Employ-
ee object is instantiated with constructor initialization. The test case also reads the
input element from the Html form. The element name is ‘empNo’ and it raises the
keypress event. The validation is executed when the databinding is triggered for
the element. Listing 39.7 shows the code for the test.

294 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 39.7: The test case

The above code declares a local variable expectedFormValidationStatus; the value
is set to VALID. This variable will be used to represent the expectations set. The code
declares the Employee instance, with a constructor initialization for properties of the
Employee class. The fixture extracts the input element and emits its keypress event.
The detectChanges() function of the ComponentFixture class triggers the databinding.
After the databinding is changed, the status of the form is read; if it is valid, the test
will be successfully executed, otherwise it will fail.

The following code listing shows the complete code:

Listing 39.8: The complete test code

Chapter 39

295

Model Driven Form Testing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Add the formtest.html file to the project for testing the html. The following listing
shows the markup of the html file:

Listing 39.9: The formtest.html

296 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Run the application using the following command:

npm run start

The test result can be seen using the following URL:

http://localhost:3000/formtest.html

Figure 39.1 shows the test result:

Figure 39.1: Success test

Since all of the input elements have valid values per the validation rules, the submit
button gets enabled.

Now, give a negative value to the EmpNo in the test case:

Chapter 39

297

Model Driven Form Testing

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Run the test. The test will fail as shown in Figure 39.2 and the Submit button will be
disabled.

Figure 39.2: Failed Test

Conclusion

Model-driven forms allow you to isolate fields from the DOM using FormBuilder,
ControlGroup, and Control objects. As these fields are controlled from the code, they
have to be tested for correctness. This chapter demonstrated how to test these pieces.

298 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

40
Angular 2 Debugging

UNTIL THIS POINT, THIS book has demonstrated a number of features of Angular 2
and showcased many examples using these features.

When you start building actual applications using the Angular 2 framework, things
may not work the way you want them to. This may happen because of some minor
errata induced while writing code, or due to an external factor for like non-responsive
REST APIs. In either case, the developer responsible for a piece of code needs to debug
the code using the browser’s developer tools to understand the reason behind the
issue and to find a fix for it.

This chapter will demonstrate how to debug an Angular 2 application using a browser’s
developer tools, as well as a tool called Augury.

NOTE: This chapter uses the code sample of Chapter 34—
Parameterized Routes, Creating Sub-Routes. To follow along,
run the sample in the Chrome browser.

Debugging Using Developer Tools

The JavaScript debugger in the browser is a useful tool to debug the client-side script of
an application. It provides the various useful options to place a breakpoint, including:
inspection of values of variables, showing stack of the functions called, and several
other options for debugging.

It is possible to debug TypeScript code in the browser through source maps. The
source map files provide mapping between the converted JavaScript code and the
actual TypeScript code. The developer tools of the browser detect the presence of
source map files in the deployed code. The source map file and the TypeScript file
are downloaded to the browser at the time of debugging.

Chapter 40

299

Angular 2 Debugging

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

NOTE: The source map and TypeScript files are not down-
loaded unless the source map option is enabled in the de-
veloper tools and the developer tools are launched in the
browser [Ctrl + Shift + I (Windows) or Cmd + Opt + I (Mac)],
as they are not needed for the application to run. To enable
source maps, check the settings of the developer tools in
your browser. Here’s a useful link: http://bit.ly/2dCCjhN.

The tsconfig.json file has an option to enable source map files when the TypeScript
code is converted to JavaScript. If you check the tsconfig.json file in any of the samples
in this book, you will find the following statement:

"sourceMap": true

When the sourceMap option is set to true in the configuration, the TypeScript compiler
produces a file.js.map file for every TypeScript file it compiles. If you haven’t already
noticed this file, you may go back to one of the folders of the samples for reference.
When an application runs, open the developer tools, browse the JavaScript source
code of the application, and the TypeScript files will be in the browser. Figure 40.1
shows the code of Chapter 34 in the developer tools.

Figure 40.1: Code of Chapter 34 in source tab of developer tools

The browser gets both JavaScript and TypeScript versions of every file. When you try
to place a breakpoint on a statement in the JavaScript file, you will see that it takes

300 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

you to the corresponding statement in the TypeScript file. Upon refreshing the page
(with the developer tools still open), the control will stop at the statement with the
breakpoint.

Figure 40.2: Debugger stopped at a breakpoint

The next part is the same as debugging JavaScript code on the browser. Although
JavaScript debugging in detail is beyond the scope of this book, you can find a great
amount of online documentation on this subject.

Using Augury

Augury is a Chrome extension, developed by rangle.io, for debugging Angular 2
applications. It is similar to Batarang, which was used to debug Angular 1 applications.
Augury shows component trees, route trees, details of the components, and it allows
you to play with the values of the fields in the component.

Augury can be installed from the Chrome Web Store. It adds a tab named Augury
to the Chrome developer tools; this tab is used to show the information about the

Chapter 40

301

Angular 2 Debugging

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

application. It has two inner tabs named Component Tree, Router Tree and NgModules,
which will be explained in the following sub sections.

Component Tree

An Angular 2 application is a tree of components. Augury reads the hierarchy in which
they are rendered and creates an interactive view using the data. Figure 40.3 shows
the hierarchy of the components when a user enters the Reviews List view.

Figure 40.3: A sample components tree in Augury

As shown in Figure 40.3, it lists all components and the HTML elements on the page.
Details of a component can be inspected in the right pane under the Component
Tree tab by clicking a node of the component. Figure 40.4 shows the details of
ReviewsListComponent.

Figure 40.4: Properties of ReviewsListComponent

302 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Following are the possible operations in this view:

•	 Double clicking the component node takes you to the HTML
element of the component

•	 View Source link in the Properties tab takes you to the
TypeScript code of the component

•	 The accordion state shows values of the fields in the
component object. You can see values of these objects by
expanding the nodes

•	 The Dependencies accordion shows the list of dependencies
injected into the component

The values of the objects can be modified in the State accordion, and the modified
values will be reflected in the view immediately. Figure 40.5 modifies a value and
shows the result on the page.

Figure 40.5: Modified value in Augury

The Injector Graph tab shows the list of dependencies of the selected component
and their hierarchy. The dependency tree starts with the root-most component and
it shows the source components where they are registered. If the providers of the
dependencies are registered at the module level, the first component of the module
becomes the source for the dependency. If a provider is registered in a component,
the component becomes the source. Figure 40.6 shows the dependency graph. Here,
the dependency SampleService is registered in ReviewsComponent, and the rest of
the dependencies are registered in the module. So the graph shows a subtree for
SampleService.

Chapter 40

303

Angular 2 Debugging

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Figure 40.6: Injector Graph

Router Tree

The router tree tab shows a tree of the routes configured in the application. To plot
this tree, Augury needs the Router service to be injected in the root component of
the application, and the name of the object injected to be router. As of this writing,
the router tree plots only one level of the tree and, for the default and child routes,
it shows a leaf node named no-name-route. There is a bug registered in the GitHub
repository for the child routes. Hopefully this will be remedied in the near future.
Figure 40.7 shows the router tree of the code in Chapter 34.

Figure 40.7: Router Tree

NgModules

The NgModules tab shows the list of modules currently loaded on the page and
their details. The details include the modules imported by the module, the members
exported by the module, the services added to the providers section in the module, the
blocks added to the declaration section of the module and the ProvidersInDeclaration.
Figure 40.8 shows two of the modules loaded in the reviews page of the sample:

304 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Figure 40.8: Modules

Conclusion

Effective debugging saves time and clarifies an issue that has occurred in the appli-
cation. Browser developer tools can be used to debug TypeScript code of Angular 2
applications. The chapter also showed how Augury can be used to inspect Angular 2
components and its objects.

305Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Chapter

41
Building and Deploying Angular 2

App using WebPack

CODE IN FRONT-END APPLICATIONS usually spans across several files. In
addition to the thousands of lines of JavaScript code, these applications have CSS
files, HTML template files, static images, possibly JSON files, and various others. Devel-
opers working on an application may use pre-processing languages like TypeScript,
CoffeeScript, SASS, LESS or similar technologies to make their work productive.

The build setup of the application must be defined with all of these technologies in
mind. The build system should give users the flexibility to configure the build setup
targeting development and production workflows.

Webpack is a module loader and bundler that solves this problem. Webpack consid-
ers every file in the application as a module. By default, it treats all files as JavaScript
modules, so if you have other file types in your application, Webpack must be taught
to recognize them. This is done using extensibility point, which Webpack provides
through loaders. Loaders are the plugins that make Webpack understand the way
it has to convert a file into a module. The Webpack team has authored loaders for
most of the common scenarios and the community has created a large number of
loaders, too.

Setting up Webpack

Like any other Node.js based task runner, Webpack can be installed in the project or
at the system level using npm. The following command installs Webpack globally:

> npm install –g webpack

To check if the installation was successful, you may run the following command to
check for the version of Webpack:

> webpack --version

306 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

As Webpack is a dependency to be used during development and not during pro-
duction; it must be installed as a dev dependency in the application. The following
command has to be used to install Webpack in a project:

> npm install webpack --save-dev

Setting up the sample aplication

This chapter uses a slightly modified version of the sample built at the end of Chapter 34.
A modification will be made to the way children routes of the reviews module are
loaded. The sample in Chapter 34 specifies path of the module file in the loadChildren
property, which loads the module related files dynamically when the reviews route is
being loaded. It is difficult to make this work with Webpack, so it must be modified to
load the module before the route is registered. Listing 41.1 shows the modified routes.

Listing 41.1: Modified app.routes.ts

The SystemJS module loader is not needed as Webpack will convert all of the modules
into its own CommonJS-based module system. It is safe to remove the npm package
installing the SystemJS package, the SystemJS configuration file, and the script and
style references specified in index.html. Webpack adds the required script and style

Chapter 41

307

Building and Deploying Angular 2 App using WebPack

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

reference tags dynamically to the file index.html. Now the index.html file is a plain
HTML file with an element for the main component of the Angular2 application.
Listing 41.2 shows the modified index.html file:

Listing 41.2—Modified index.html file

Webpack has its own web server to be used for development. To use it without any
difficulty, the server pieces of the sample have to be moved into a different application.
The sample code of this chapter has two folders: one containing the client-side Angular
code and another containing the server side Koa.js code. The server code enables
CORS to allow the client application use the APIs from a different domain. Check the
server folder in the sample code of this chapter to learn more about the APIs.

Using Webpack in the Sample

Webpack requires a set of packages, including: Webpack, Webpack dev server, and
a set of loaders to make Webpack understand about the files that the application
uses. Replace the devDevepdencies section of the package.json file with the following:

Listing 41.3 -

308 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The following bullet points explain the role of the packages installed for Webpack
in listing 41.3:

•	 webpack: Installs Webpack in the application
•	 webpack-dev-server: The development server of Webpack. It

launches the application on a light-weight server. It keeps
watching the source files for any changes and runs the Webpack
bundling process whenever it finds a change in the source

•	 webpack-merge: This package allows merging of multiple
Webpack configurations into one. It helps in not repeating
the Webpack configuration and extends a configuration from
another

•	 angular2-template-loader: To load the HTML templates used in
the Angular 2 components, where the component uses templa-
teUrl property of the metadata to load the template

•	 awesome-typescript-loader: To transpile TypeScript code to
JavaScript using the configuration set in the tsconfig.json file
so that Webpack’s JavaScript loader can load it

•	 css-loader: To make Webpack understand CSS files
•	 extract-text-webpack-plugin: A plugin to split the code into

multiple bundles
•	 file-loader: A generic file loader, accepts a set of extensions and

loads the matched files to the bundle
•	 html-loader: To load HTML template files. It processes the

statements that load the templates using a module loading
technique, like require()

•	 html-webpack-plugin: A Webpack plugin to simplify creation of
HTML file to serve the Webpack bundles created in application

•	 null-loader: Loads an empty module
•	 raw-loader: Simply reads and loads a file as a module; it doesn’t

try to understand what code the file has
•	 style-loader: To dynamically inject <style> or <link> tags to the

HTML file

All of these packages will be used in the upcoming sections.

Webpack works based on entry points. An entry point is a JavaScript file that loads a
number of other files internally using a module system. The application will have three
entry points: one to load the polyfills (like core-js and rxjs), one to load the libraries
required by the application, and one to load the application’s code. The file main.ts
in the app folder can be used as the entry point for the application. Two more files
must be added to define the entry points for the other two chains of files. Add a file
named polyfills.ts to the app folder and add the following code to it:

Chapter 41

309

Building and Deploying Angular 2 App using WebPack

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 41.4: Code of polyfills.ts

Add another file for the libraries and name it vendor.ts. Add the following code to
this file:

Listing 41.5: Code of vendor.ts

310 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Configuring Common Tasks

Though the workflows for development and production will vary, they have much
in common. The applications must load the same set of files and they have to be
processed in the same way. It is better to have a configuration file that can be used for
both development and production; the target-specific configuration can be extended
from the common configuration using the webpack-merger package.

To maintain the Webpack configuration files, add a new folder named config and add
a new named webpack.common.js. It will be processed by a Node.js process, so the
code in the file will look similar to any Node.js file. It imports the required objects
and exports the Webpack configuration object. Listing 41.6 shows the skeleton code
in this file:

Listing 41.6: Skeleton of code in webpack.common.js

The first thing the Webpack needs is the set of entry points as it will be passed as an
object with every entry point as a property in the object, and the value pointing to
the corresponding file. Listing 41.7 shows the entry points for the sample application.

Listing 41.7: Webpack entry points

Notice the source code doesn’t specify extensions of the modules loaded by the
source files. The list of possible extensions must be passed to Webpack so it can load
the files correctly during bundling. For this, the following snippet has to be added to
the configuration in webpack.common.js:

Listing 41.8: File extensions

Chapter 41

311

Building and Deploying Angular 2 App using WebPack

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The most important part of Webpack to be configured is the list of loaders to be used.
As different application will have different types of files to be loaded, the required set
of loaders must be configured as an array. Every entry in the array has to set values
to the following properties:

•	 test: A regular expression to match with the extension of
the file

•	 loader or loaders: One or more loaders to be used to process
the files matched by the expression specified in test

•	 include: Specific set of files in addition to the matching list
to be included in the bundle

•	 exclude: Specific set of files out of the matching list to be
excluded from the bundle

Listing 41.9 shows the configuration of loaders.

Listing 41.9: Loaders configuration in webpack.common.js

312 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 41.9 configures loaders for the TypeScript files, CSS files, HTML files, and the
font and icon files. Following are some notable points in the loaders configuration:

•	 There are two loaders associated with TypeScript files. One
is to transpile the TypeScript files, and the other is to load
Angular 2 templates. The angular2-template-loader loader is
passed to parse the HTML template URLs in the components,
and load them to the bundle

•	 There are two loader configurations for the CSS files. Out
of them, one loads the CSS from an external library; it uses
ExtractTextPlugin to avoid adding of this style in the bundle
and to keep it separate. The other loader injects the <link>
tag to the HTML file. The second configuration to load the
CSS files looks for all CSS files inside the source code, and
loads them into the application bundle using the raw loader.
The CSS of these files will be embedded in the JavaScript
file containing the application code.

The last element to be added to the common file is the list of plugins (it requires two)
to process the files. It needs the CommonsChunkPlugin to create the three different
bundles and store them in their respective files. The HtmlWebpackPlugin is used to
insert the required script and style tags to the HTML file.

Listing 41.10: Plugins in the common file

Using Webpack for Development

As previously mentioned, the application requires two different configurations for
development and production. The configuration for development will store the bundle
files in the memory and will start the Webpack’s dev server to serve the application.
Listing 41.11 shows the code of this file.

Chapter 41

313

Building and Deploying Angular 2 App using WebPack

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 41.11: Code of webpack.dev.js

Clearly, it extends the configuration from the common configuration. As this is for
development, it generates the source map files to ease the process of debugging. To
run the application, the following command has to be executed from a command
prompt:

> webpack-dev-server --config config/webpack.dev.js --inline --progress --port 3000

The above statement starts the Webpack development server on port 3000 based
on the configuration set in the file webpack.dev.js. Open a browser and change the
URL to http://localhost:3000 to see the demo working. Remember to start the server
before loading the client application on the browser.

As the webpack-dev-server command is too long to type, it would be better to store
it in the npm scripts and use an alias to run it. Add a script section to package.json
file and add the following statement to it:

314 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Using Webpack for Production

The production configuration file stores the bundled files in the dist folder. To bust
the cache of the files deployed to production, it generates a hash code for every file.
The code is appended to the files so that their names will be unique after every build.
This configuration doesn’t generate source maps. It uses the uglify plugin to minify
the JavaScript code generated from the libraries and the source. To ensure zero faults
in the bundles, it uses the NoErrorsPlugin. This plugin prevents producing the assets
when the bundling process encounters an error.

Add a new file to the config folder and name it webpack.prod.js. Add the following
code to this file:

Listing 41.12: Code of webpack.prod.js

Chapter 41

315

Building and Deploying Angular 2 App using WebPack

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

To run the bundling process, the webpack command must be supplied with the
configuration file webpack.prod.js. Following is the command to generate the build
files:

webpack --config config/webpack.prod.js --progress --profile --bail

On running this command, files are produced and and stored in the dist folder. These
files can be used to deploy the static web application anywhere. To create an updated
bundle after modifying a few of the source files, it would be best to delete the dist
folder and generate it again. As it involves multiple steps, it would be convenient to
have an npm script for it. The following is the updated script section of package.json:

 Now the application can be built using the command:

> npm run build

Conclusion

Webpack is one of the most widely used front-end module bundlers. As shown here,
it can be used quite efficiently for both development and production

316 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

42
Building Secure Angular 2 apps

SECURITY ISSUES ARISE FROM weaknesses on both the server and client
ends. Security is one of the most vital features to be considered regarding data in
an application. Single Page Applications (SPA) use significant amount of data from
a server through REST APIs. Anyone with information about the URL and the format
of data exposed via a REST API can easily call it using an HTTP client tool like Fiddler
or Postman. Depending on the information exposed via these APIs, it is important to
secure these APIs and consume them from client applications in a secured manner.

This chapter will discuss how to consume secured APIs in an Angular 2 application.

Like any secured application you may have seen, the secured parts of an SPA shouldn’t
be accessible unless the user logs in. Every logged in user gets a JSON Web Token
(a.k.a JWT) from the server. If you are not familiar with how JWT works, you may
read this article from Auth0. The server must send this token to a secured API with
every call. The next section explains the process of setting up the Koa.js server with
JWT, and using that in an Angular 2 application.

For the sake of simplicity in our example, we will assume that a user who has logged in
has access to the entire application.

NOTE: With JavaScript, almost any authentication system
can be compromised, simply because the code runs direct-
ly in the browser. It is always prudent to implement serv-
er-side security in addition to client-side security.

Chapter 42

317

Building Secure Angular 2 apps

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

For the sample code of this chapter, the APIs have to be secured. If you want to follow
along, you may download the code from the folder before in the downloadable content
of this post. This folder contains an Angular 2 application and a Node.js server that
exposes a few REST APIs. Some of these APIs are secured and their consumption in
the application has to be modified. The following sections will do so.

Creating a Login Page

The application needs a login page. For this it needs:

•	 a component
•	 a route to be associated with the page
•	 a service to handle the logic of login/logout, as well as to

provide login information to the application.

Add a new folder named login to the app folder. All files related to login and authen-
tication will be stored in this folder.

Login Service

It would be wise to store the functionality of interacting with the login API and the
login information in a Service. This information will be used in other components of
the application as well. Add a new file to this folder and name it login.service.ts. This
service will perform the following tasks:

•	 Accept credentials and send them to the login API; store the
access token received in response of the login API in a field,
and store it in a local storage

•	 Remove the access token from local storage when a user
logs out

•	 Serve HTTP headers, which include the JSON web token.
These headers must be set to every secured API

Listing 42.1 shows the code of this service:

318 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 42.1: Code of LoginService

Login Component and Route

The login page accepts the username and password from the user and logs in the
user into the application. The page consists of a component (LoginComponent) to
carry this functionality. The LoginComponent makes use of the LoginService created
in listing 42.1 to pass the credentials of the user to the API. Code of the component
is straightforward, as is shown in listing 42.2.

Chapter 42

319

Building Secure Angular 2 apps

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 42.2: Code of LoginComponent

The user can enter the credentials using a form contained in the HTML template
of this page. The form calls the submit method defined in the LoginComponent on
submission. Listing 42.3 shows the code of the template.

Listing 42.3: Template of LoginComponent

320 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

The component is created, but it is not reachable as the application doesn’t have a
route for it. The listing 42.4 shows the route for this view; it has to be added to the
Routes array in the file app.routes.ts:

Listing 47.4: Route for login page

The listing 47.5 shows the updated set of routes in the file app.routes.ts:

Listing 42.5: Updated routes

Run the application and change the URL to http://localhost:3000/signin. You will see
the login page in the view. A screenshot of the login page is shown in Figure 42.1.

Figure 42.1: Login page

Upon signing in, an entry is added to local storage to store the token and redirects
the user to the books list page.

Chapter 42

321

Building Secure Angular 2 apps

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Adding Security to Some Parts of the Application

SENDING AUTHENTICATION TOKEN WITH REQUESTS

Though the application has a login page, when a logged-in user attempts to add a
new book or adds a new review, the operation will fail. This is because the bearer
token is not sent to the POST APIs performing these actions. The LoginService defined
in listing 42.1 has a method returning the request headers with the bearer token. The
methods of BookService have to be modified to use this method.

The LoginService has to be injected into the BookService, and the methods addBook
and addReview have to use the service to pass the headers to the requests. Listing 42.6
shows the modified portion of the BookService:

Listing 42.6: Modified portion of BookService

Now the operations of adding a book and adding reviews to an existing book, will work.

SECURING ROUTES

As the application performs some of its operations in a secured way, it is important
to secure the routes performing these operations. A user shouldn’t be allowed to visit
these routes unless he or she is logged in. Angular 2 provides route guards to hook
into different phases of the routes, and to control the corresponding phase based on
the current state of the application. A guard is a service in an Angular 2 application. A
guard implements a method which gets called automatically when the corresponding
route is encountered.

322 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

To prevent a route from loading, the route must implement the canActivate guard. This
guard runs when a route is about to be loaded. The service handling the guard has to
implement a method named canActivate, as it is invoked by the router. This method
can return a Boolean value or an asynchronous object resolving a Boolean value. The
route loads if the return value is ‘true’ and it doesn’t load if the return value is ‘false’.

Add a new file to the folder login and name it auth.guard.ts. Add the following code
to it:

Listing 42.7: Code of AuthGuard

The class AuthGuard in the listing 42.7 implements the interface CanActivate. While it
is not mandatory to implement it, it aides in accessing tooling support in Visual Studio
Code for the method canActivate. It uses the get property isLoggedIn of LoginService
to verify that the user is logged in.

This class has to be registered in the providers array of the module. The following
snippet shows the module after adding AuthGuard as a provider.

Listing 42.8: Module with AuthGuard in providers

Now the guard has to be added to the routes. The following snippet shows the
modified routes:

Chapter 42

323

Building Secure Angular 2 apps

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Listing 42.9: Add book and add review routes with guards

Save the files and run the application. When you try to add a book or add review
pages without logging in, you will be redirected to the login page. These pages work
after logging in.

Adding Login/Logout Link

As of now, the application doesn’t provide a link to login or logout. It will be difficult for
users to figure out that they have to login to use the app unless there is a redirection,
and an option to logout. A link at the top right corner of the page would make it easy
for anyone to know about this functionality. As this will be a common link for all of
the pages, it has to go in the AppComponent.

Change the code of AppComponent as shown in listing 42.10:

324 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Listing 42.10: Code of AppComponent

And the listing 42.11 shows the template of the AppComponent:

Listing 42.11: Template of AppComponent

Save the files and run the application. The login link should appear on the top right
corner of the page as shown in Figure 42.2.

Chapter 42

325

Building Secure Angular 2 apps

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Figure 42.2: Home page with login link

Once a user is logged in, text of the link should change to Logout.

And that’s it. You have successfully created a secured Angular 2 application that
requires the user to login before performing any operations.

Conclusion

Security is one of the primary needs of any application. Angular 2 provides enough
support to secure rich applications built on the framework.

326 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Chapter

43
Angular 1 to Angular 2 Cheatsheet

THE PREVIOUS CHAPTERS EXPLORED different features of Angular 2, starting
from a “Hello World” kind of an application to a secured Angular 2 application, using
most of the features of Angular 2. Angular 2 implements the concepts of Angular 1
in a new way and most of the code blocks of Angular 1 can be mapped to their
corresponding versions in Angular 2.

This chapter presents a convenient cheat sheet comparing the way the features are
implemented in both versions of the framework.

NOTE: The Angular 1 code snippets in this chapter are in Ja-
vaScript, and the Angular 2 code snippets are in TypeScript.
The choice of language is based on popularity of the lan-
guage for the corresponding framework.

NOTE: After Angular 2 announcement, the library previ-
ously known as AngularJS was renamed to Angular. Hence
referred to as Angular 1.

Chapter 43

327

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Modules

Both Angular 1 and Angular 2 have a module system for the framework.

ANGULAR 1

Modules in Angular 1 are used for grouping a related set of controllers, services,
factories, directives, and other code blocks. A module can depend on one or more
existing modules. An Angular 1 module is defined using the angular.module method.

ANGULAR 2

Modules in Angular 2 are used to group a set of related components, directives, pipes,
services, and other blocks. A module can use the functionality in other modules. To
do so, the other modules must be imported into the metadata definition of the main
module. A module can export a set of declarations to make them visible to other
modules.

328 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Bootstrapping

To use either of the versions of the framework, the page must be bootstrapped using
the root module of the application.

ANGULAR 1

An Angular 1 application can be bootstrapped automatically by using the ng-app
directive on any of the HTML elements, or it can be manually bootstrapped using
the angular.bootstrap function.

Or,

ANGULAR 2

The main module of an Angular 2 application should have at least one component
specified in the bootstrap property of the module metadata. The HTML page of the
application must contain these components. The main module has to be passed to
the platform specific bootstrap function. For browsers, it is platformBrowserDynamic().
bootstrapModule.

Chapter 43

329

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Services

Services are singleton objects that can hold a functionality and which can be used
independently anywhere in a module.

ANGULAR 1

Services in Angular 1 are JavaScript constructor functions. They have to be registered
using the service method on a module object.

ANGULAR 2

Services in Angular 2 are TypeScript classes. They have to be registered in the providers
section of a module metadata.

330 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Factories

Factories are similar to services. A factory is a function providing an object. The fac-
tory function is called only once, and the object returned by this function is served
whenever the factory is injected somewhere.

ANGULAR 1

Factories in Angular 1 are registered using the factory method on the module object.
A factory is a simple function returning the object.

ANGULAR 2

In Angular 2, a factory is a function that has to be registered on the module using
the useFactory property.

Chapter 43

331

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Values or Constants

Values and constants represent simple JavaScript objects, which don’t depend on
any other code block of the module.

ANGULAR 1

In Angular 1, the constants and values have to be added to the module. Constants can
be injected anywhere including providers and config blocks. Values are not available
in configuration phase, so they can’t be injected in the config and run blocks.

ANGULAR 2

Any value can be made injectable in Angular 2 using OpaqueToken. The value has
to be registered using an OpaqueToken. The value can be made constant using the
const keyword.

332 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Components (Element directives in Angular 1)

Components are used to create custom HTML elements. These elements are highly
reusable and therefore can be easily distributed anywhere in the application. Com-
ponents also make the HTML more readable and predictable.

ANGULAR 1

A component in Angular 1 is similar to the element directives albeit with a few
restrictions. It can accept inputs using bindings option in the component definition.
The name of the component has to be in camel-cased notation and in HTML it has
to be used using the dashed notation.

ANGULAR 2

An Angular 2 component is a TypeScript class with the Component metadata. A selector
of the component has to be assigned with the same name as it would be in the HTML.

Chapter 43

333

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

The components can interact with the containing page using the Input properties
and Output events.

334 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Directives (Attribute directives in Angular 1)

Directives are used to teach new tricks to HTML and to enhance the functionality of
HTML elements and components.

ANGULAR 1

Angular 1’s directives must be created using the directive method on the module. The
directive consists of a directive definition object (DDO), which provides a number of
properties to control the way a directive has to work.

ANGULAR 2

Chapter 43

335

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Directives in Angular 2 are TypeScript classes with the Directive decorator applied on
them. The selector property of the directive metadata allows restricting the directive
to be used as an attribute (an attribute on a given HTML element or a component).

Filters (Pipes in Angular 2)

Angular has a rich binding system in both versions of the framework. Filters or pipes
provide a way to format the data before displaying it on the page.

ANGULAR 1

Angular 1 provides a number of built-in filters and it provides an API to write custom
filters. The filters have to be defined using the filter method on the module object.

ANGULAR 2

Custom pipes in Angular 2 are TypeScript classes with a Pipe decorator. The pipe
must implement the transform method, which has to format the data and return it
for binding.

336 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Data Binding: Value, Property, Event, Two-way

Data Binding is one of the most useful features in Angular. The data binding system
makes it possible to change the view whenever there is a change in the model value
without having to write even a single line of code.

VALUE BINDING

Value binding is used to bind simple values on the pages.

ANGULAR 1

ANGULAR 2

(Same as Angular 1)

Chapter 43

337

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

PROPERTY BINDING

Property binding is used to bind values in the view model to properties on the HTML
elements, or components.

ANGULAR 1

Angular 1 has a number of built-in directives to bind values to the properties.

Or,

Or, using directives defined for the attributes, like:

ANGULAR 2

Property binding in Angular 2 is based on a special binding syntax that can be used
with any valid DOM property.

Or,

338 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

EVENT BINDING

Event binding makes it possible to bind methods in the view model with the events
on the HTML elements.

ANGULAR 1

Like property binding, Angular 1 has a number of built-in directives to bind the events.

ANGULAR 2

Angular 2’s event binding works on the DOM events defined on the target element.
Any event can be bound with a method in the view model using the parentheses
around the event name.

Or,

Chapter 43

339

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

TWO-WAY BINDING

Two-way binding keeps the data in the model and the bound value, in sync.

ANGULAR 1

The directive ng-model in Angular 1 provides the feature of two-way binding. The
textbox shown in the following snippet keeps the value in the textbox in sync with
the property value in the view model.

ANGULAR 2

Angular 2 provides the directive ngModel for two-way binding. Two-way binding in
Angular 2 is a combination of property and event binding, hence the notation has
both square brackets and parentheses.

Or,

340 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Commonly used Template Blocks

REPEATER STATEMENTS

ANGULAR 1

Angular 1 provides the directive ng-repeat to iterate over a set of items in the template.
Every instance in the repeater gets a record object and this object is used for binding
data on the page.

ANGULAR 2

Angular 2 provides the structural directive ngFor to repeat a piece of content in HTML.
It is similar to ng-repeat in Angular 1, except it uses the ES6 like syntax in the directive.

Chapter 43

341

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

CONDITIONALLY DISPLAYING OR HIDING A PORTION OF THE PAGE

ANGULAR 1

Angular 1’s ng-if directive can be used to optionally add elements to or remove
elements from the page based on the value of a data item.

ANGULAR 2

Angular 2 provides the structural directive ngIf to add elements to or remove elements
from the DOM of a page dynamically.

342 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

SWITCHING CONTENT

ANGULAR 1

The ng-switch directive in Angular 1 allows switching among a set of elements,
depending on the value assigned to the model. Every switchable element should
have the ng-switch-when directive with the value of the model assigned to it. The
ng-switch-default directive has to be used as fallback.

ANGULAR 2

Angular 2 provides with the directives ngSwitch and ngSwitchCase to switch content
among a list of elements. ngSwitchDefault has to be used for handling the default case.

Chapter 43

343

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

HTTP Calls

Both versions of Angular provide abstractions around XHR to call REST APIs.

ANGULAR 1

The $http service is the abstraction around XHR in Angular 1. It is based on promises
and returns a $q promise in response. The promise can be used to check for success
or failure of the API call.

ANGULAR 2

Angular 2 has the module HttpModule containing the utilities to call REST APIs. The Http
service is the abstraction around XHR. Unlike Angular 1, it returns an RxJS Observable
object, which can be used to handle success and failures of the REST API.

344 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Routing

CONFIGURING ROUTES

ANGULAR 1

Routes in Angular 1 have to be configured in the config method of the module object.
Most of the routers targeting Angular 1 have a provider, which must be injected to the
config block to configure the routes. Every route consists of a controller and a template.

ANGULAR 2

Routes in Angular 2 are a set of objects in an Array. At the minimum, every route needs
a URL template and a component. A module must be created using the routes array
and it has to be imported in the application module.

Chapter 43

345

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

PLACEHOLDER IN VIEW FOR ROUTES

ANGULAR 1

The page has to define a placeholder where the route has to render the content. In
Angular 1, the target has to be marked with the directive ng-view.

ANGULAR 2

Angular 2 provides the component router-outlet to define the placeholder on the page.

346 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

ROUTE RESOLVE BLOCKS

At times, the route to be loaded may need some data to display on the page. This
data is provided using the resolve blocks.

ANGULAR 1

The resolve block in Angular 1 is an object with every entry equivalent to a factory.
The resolve block has to return a value, which could be a simple object or a promise.

ANGULAR 2

The resolve block in Angular 2 is an object with every entry assigned with a service. The
service has to implement the method resolve. This method is called by the framework
before loading the route. The method may return an object, a promise, or an RxJS
Observable.

Chapter 43

347

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Dependency Injection (DI)

DI is a pattern in software development which is used to make the code loosely coupled,
extensible, and testable. It is quite popular among typed server side languages like
Java and C#. Angular 1 brought this feature to JavaScript, and Angular 2 continues
to use this feature, but it implements it in a different way.

348 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

ANGULAR 1

Every service, factory, value, provider and constant in Angular 1 is injectable. There
are multiple ways to inject dependencies in Angular 1.

ANGULAR 2

Every service or token in Angular 2 can be injected in any component, service, directive
or pipe. As all of these blocks are TypeScript classes, Angular 2 injects them into the
constructors when their objects are created.

In the above snippet, ActivatedRoute and DataService are services injected into the
component. If they are from a different module, the modules must be imported in
the component's module. If they are custom services, they have to be registered in
the providers property of module metadata.

Chapter 43

349

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Pub/Sub Events

Events are a great way to communicate among multiple blocks of code without
making them interact directly. This pattern helps in sending and receiving data very
easily and effectively.

ANGULAR 1

Angular 1’s scope object has the methods $broadcast and $on to send and listen
respectively. The events can be published from anywhere and listened from anywhere.

Sending event:

Listening to the event:

ANGULAR 2

Subject class from RxJS is used for pub/sub events in Angular 2. It can be used in any
of the code blocks of Angular 2.

350 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Assigning Dynamic CSS Classes

Effective use of data binding makes the UI more intuitive and responsive. The ability
to dynamically modify CSS classes assigned on an element is built into both versions
of Angular.

ANGULAR 1

Angular 1 provides the directive ng-class to handle the CSS classes. It is extremely
powerful and accepts different types of values.

ANGULAR 2

Angular 2 provides the directive ngClass to handle the CSS classes. Like its counterpart
in Angular 1, it accepts different types of values.

Chapter 43

351

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Manipulating DOM in a Directive

ANGULAR 1

Angular 1 wraps the elements around jqLite, a lighter version of jQuery. Most of the
common DOM operations of jQuery can be performed using the jqLite objects. As a
best practice, the DOM manipulation has to be done in the directives.

ANGULAR 2

Angular 2 doesn’t use jqLite. The DOM operations in Angular 2 are the same as the
operations that are generally performed on browser objects. Directives and Compo-
nents can be used for DOM manipulation.

352 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Angular
Essentials

Using Browser APIs

ANGULAR 1

Angular 1 works based on a digest cycle. So any change in the values of any event
other than Angular 1’s own events, have to be notified to the framework by calling
the $scope.$apply method.

ANGULAR 2

Angular 2 has zones running behind the scenes to monitor any activity happening
in the browser’s event loop. All browser events are tracked by zones, and thus the
data binding system begins acting immediately without waiting for an explicit signal
from the application.

Chapter 43

353

Angular 1 to Angular 2 Cheatsheet

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Conclusion

Many of the features of Angular 1 can be mapped to their counterparts in Angular 2.
This cheat sheet lists both Angular 1 and Angular 2 versions of most of the code blocks
to ease the process of transition.

 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

355See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

1
Write Applications Fast Using

Ignite UI Grid

WRITE WEB APPLICATIONS FASTER with Ignite UI. You can use the Ignite UI
library to help quickly solve complex LOB requirements in HTML5, jQuery, Angular,
React, or ASP.NET MVC. Use the Ignite UI library to add a fast, responsive grid with
many features (like pagination, sorting, search, virtualization etc.). It takes just a few
minutes using a few lines of code. Ignite UI has many controls, data visualizations
charts, and framework elements that are simple to configure and customize. The
ease of Ignite UI control configurations and customizations allows you to create a
web application quickly.

In addition to seamlessly rendering large sets of data, the Ignite UI Grid features
many valuable tools, such as filtering, paging, and sorting. You can learn more about
Ignite UI features at http://www.igniteui.com; you can also learn more about Angular
in Angular Essentials, a free eBook published by Infragistics.

Lesson Objectives

1.	 Add Ignite UI grid
2.	 Configure grid columns

For more information on the controls used in this lesson, see http://infragistics.com/
products/IgniteUI/grids/data-grid.

At the end of this lesson, you will have a working grid configured for columns in an
Angular application.

You can learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igni-
teui-angular2.

356 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Setting up the Project

You may download the starter project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After downloading the project, navigate to the directory and run the commands
below:

npm install
npm start

You have executed the npm install command to install all dependencies, using the
npm start command to run the Angular application. If the project setup is correct,
you will have a running Angular application as shown in the image below:

STEP 1: Import and Declare the Component

To work with Ignite UI Angular components, you must import and declare them in
the module. For example, to use the igGrid component in an Angular application,
import and declare the IgGridComponent in the application module.

In the project, navigate to the Finance App folder and then to the app folder. Open
the file app.module.ts, and add the import statements below, just after the existing
import statements.

import{IgGridComponent} from 'igniteui-angular2';
import {GridComponent} from './grid.component';

After importing the required components, you must declare them in the application
module. Add IgGridComponent and GridComponent in the AppModule’s declaration
array. Modify @NgModule decorator in app.module.ts as shown below:

357

Write Applications Fast Using Ignite UI Grid

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 1

@NgModule({
 imports: [BrowserModule,HttpModule],
 declarations: [AppComponent,
 IgZoombarComponent,
 IgDataChartComponent,
 PriceChartComponent,
 InfoComponent,
 IndicatorChartComponent,
 VolumeChartComponent,
 IgGridComponent, GridComponent],
 providers: [AppService],
 bootstrap: [AppComponent]
})
export class AppModule { }

You have added IgGridComponent and GridComponent in the declaration array of
AppModule module. We will examine other added components and properties (like
providers) in subsequent lessons.

STEP 2: Create a Data Source

You need data to bind to the grid. This data can be a JavaScript array or a JSON object
array and can be local or provided by a REST service.

Ideally, you should create a function to return data in an Angular service so you
can use the data function in multiple components. However, for this lesson, there
is already a function called getData in GridComponent class. This function returns a
JSON object array.

In the app folder, open the file grid.component.ts and find the getData() function. In
later lessons, you will learn how to create a grid that uses data from the REST services.

STEP 3: Get data

To use data returned from the getData() function, call the function inside Angular
ngOnInit() life cycle hook and assign a returned value to the GridComponent property.

Learn more about Angular Life Cycle hooks here: https://angular.io/docs/ts/latest/
guide/lifecycle-hooks.html

In the app folder, open the file grid.component.ts and modify the ngOnInit() function
as shown in the listing below:

ngOnInit(){
 this.stocks = this.getData();
}

358 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

STEP 4: Create a Grid

The Ignite UI Grid component can be used like any other component. In the app folder,
open the file grid.component.html, and add the code as shown in the below listing:

<ig-grid widgetId="grid1" [dataSource]="stocks" [autoGenerateColumns]="true">

STEP 5: Use in an Application

To use the GridComponent in an application: in the app folder, open the app.com-
ponent.html file and add the code below just at the end of all of the markup. Add it
below the
 element.

<grid></grid>

Navigate to the application, scroll down, and, at the bottom of the page, you will find
the grid added as shown in the image below:

STEP 6: Configure Columns of the Grid

In Step 4, you created a grid by setting the autoGenerateColumns property to true.
You didn’t need to configure the columns of the grid and they were generated
automatically.

In many cases you may need to configure columns manually. You can configure
columns and other features such as paging, sorting, and filtering of the grid in the
component class.

To configure columns: in the app folder, open grid.component.ts file, and update
ngOnInit() function in grid.component.ts file with the listing below:

ngOnInit() {
 this.stocks = this.getData();
 this.gridId = "Grid1";

359

Write Applications Fast Using Ignite UI Grid

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 1

 this.gridOptions = {
 dataSource: this.stocks,
 autoGenerateColumns: false,
 columns: [
 { headerText: "CLOSE", key: "Close", dataType: "number" },
 { headerText: "DATE", key: "Date", dataType: "string" },
 { headerText: "HIGH", key: "High", dataType: "number" },
 { headerText: "LOW", key: "Low", dataType: "number" },
 { headerText: "OPEN", key: "Open", dataType: "number" },
 { headerText: "VOLUME", key: "Volume", dataType: "number" }
]
 }
}

STEP 7: Modify The Grid With Configured Columns

Ignite UI grid options and widgetId properties are enabled for two-way data binding,
so any changes in the source will be reflected on the grid. To set options and widgetId
properties: in the app folder, open the file grid.component.html, and modify it as
shown in the below listing:

<ig-grid [(options)]= "gridOptions" [(widgetId)]="gridId">

Navigate to the application and scroll to the bottom of the page to find the grid
added as shown below:

Conclusion

Ignite UI can help you write web applications more quickly. In addition to Angular,
Ignite UI may be used with React, AngularJS, jQuery, and ASP.NET MVC.

360 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Lesson

2
Write Applications Fast Using Ignite
UI Data Charts

Write web applications and solve complex LOB requirements more quickly with Ignite
UI. The Ignite UI library (with HTML5, jQuery, Angular, React, or ASP.NET MVC) can add
complex and dynamic charts to your web application quickly with a few lines of code.

Different types of charts are available in the Ignite UI:

•	 Data Chart: Display data on x-axis and y-axis as bars, lines,
areas etc.

•	 Pie Chart: Display data in a circle, divided into sectors that
each represent a proportion of the total data.

•	 Doughnut Chart: Display data in a circle, with more than one
data series.

There are approximately 50 types of data charts available in Ignite UI. Learn more
about Ignite UI data charts here: http://www.igniteui.com/data-chart/overview; you
can also learn more about Angular in Angular Essentials, a free eBook published by
Infragistics.

Lesson Objectives

1.	 Add Ignite UI DataChart
2.	 Configure data charts for axes, data sources, and series
3.	 Configure data charts for various series types.

For more information on the controls used in this lesson, see http://www.infragistics.
com/products/IgniteUI/charts/data-chart.

At the end of the lesson, you will have a working data chart configured for different
types of series in an Angular application.

Learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igniteui-angular2

361

Write Applications Fast Using Ignite UI Data Charts

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 2

Setting up the Project

Download the starter project for this lesson by clicking here. (You can also download
the final project by clicking here.)

After you download the project, navigate to the Finance App directory and run the
commands below:

npm install
npm start

You have executed the npm install command to install all dependencies and are
using the npm start command to run the Angular application. If the project setup is
correct, you will have a running Angular application as shown below. If you receive
an error while running the application, stop and run the npm start command again.

STEP 1: Import and Declare the Component

To work with Ignite UI Angular components, you must import and declare them in the
module. For example, to use the igDataChart component in an Angular application,
import and declare IgDataChartComponent in the application module.

In the project, navigate to the Finance App folder, and then the app folder. Open the
file app.module.ts, and you will find that igDataChartComponent has been added.
Add the import statements below, after the existing import statements.

import{PriceChartComponent} from './charts/pricechart.component';

362 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

After importing the required components, you must declare them in the application
module. Add PriceChartComponent in the AppModule’s declaration array. Modify @
NgModule decorator in app.module.ts as shown below:

@NgModule({
 imports: [BrowserModule, HttpModule],
 declarations: [AppComponent,
 IgZoombarComponent,
 IgDataChartComponent,
 InfoComponent,
 IndicatorChartComponent,
 VolumeChartComponent,
 IgGridComponent,
 GridComponent,
 PriceChartComponent],
 providers: [AppService],
 bootstrap: [AppComponent]
})

You’ve now added PriceChartComponent in the declaration array of AppModule
module. Other added components and other properties like providers will be outlined
in subsequent lessons.

STEP 2: Create Data Source

The data needed to bind the data chart can be a JavaScript array or a JSON object
array and can be local or be may be provided by a REST service.

Ideally, you should create a function to return data in the Angular service so data
may function in multiple components. However, for this lesson, there is already a
function called getData in PriceChartComponent class, which returns a JSON object
array. In the app\charts folder, open the file pricechart.component.ts and find the
getData() function. In future lessons, you will learn to create a grid which uses data
from the REST services.

STEP 3: Get Data

To use data returned from getData() function, call the function inside the Angular
ngOnInit() life cycle hook and assign returned value to PriceChartComponent property.

Learn more about Angular Life Cycle hooks here: https://angular.io/docs/ts/latest/
guide/lifecycle-hooks.html

In the app\charts folder, open the file pricechart.component.ts and modify the
ngOnInit() function as shown in the listing below:

363

Write Applications Fast Using Ignite UI Data Charts

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 2

ngOnInit() {
 this.stocks = this.getData();
}

STEP 4: Configure Axes

To create a data chart, you must configure the chart options. Usually, chart options
consist of three main properties:

1.	 X and Y axis
2.	 Data source
3.	 Series

Aside from these properties, other important properties are height, width, title, etc.

To configure axes, open the pricechart.component.ts file and directly after the ngO-
nInit() function, add the getPriceChartAxes() function as shown listed below :

getPriceChartAxes() {
 return [
 {
 name: "xAxis",
 type: "categoryX",
 label: "Date"
 },
 {
 name: "yAxis",
 type: "numericY",
 labelLocation: "outsideRight",
 labelExtent: 40
 }
];
}

In the above listing:

•	 X-axis type and Y-axis type are useful to display financial,
scatter, or category price series. Other possible values are
category, numericAngle, categoryDateTimeX, categoryAn-
gle etc.

You can learn about these values and types of charts here: http://www.igniteui.com/
help/igdatachart-series-types

364 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

•	 Y-axis labelExtent value is set to 40, which specifies the size
of the area dedicated to the labels or how far label would
be from the axis.

STEP 5: Configure Series

An Ignite UI data chart can have any number of series, but it must have at least
one series. To add a series in a data chart in the app\charts folder, open pricechart.
component.ts file and directly after the getPriceChartAxes() function, add the get-
PriceChartSeries() function as shown in the listing below:

getPriceChartSeries() {
 return [
 {
 name: "stockSeries",
 type: "splineArea",
 title: "Price Data",
 isHighlightingEnabled: true,
 isTransitionInEnabled: true,
 xAxis: "xAxis",
 yAxis: "yAxis",
 valueMemberPath: "High",
 showTooltip: true,
 Outline: "#00AADE"
 }
];
}

In the above listing:

•	 Series type value is set to splineArea to create Spline Area
series. If you want to create a Line series, set the value of
type to “line”. IgniteUI provides more than 25 possible series
types for the data chart including area, bar, and column.

•	 As a series valueMemberPath, you need to set property
from the data array to be displayed in the chart. Here you
are setting “Hight” property from the data source will be
rendered in the data chart series.

•	 Series isTransitionInEnabled value is set to true to enable
animation when data source is assigned.

STEP 6: Configure Chart Option

You have configured axis and series. Next, configure a chart option. In chart option,
you set all other important properties of a data chart.

365

Write Applications Fast Using Ignite UI Data Charts

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 2

Learn more about chart properties here: http://www.igniteui.com/data-chart/overview

To configure a data chart, in app\charts folder, open pricechart.component.ts file and
directly after getPriceChartSeries () function, add getPriceChartOption() function as
shown in the listing below:

getPriceChartOptions() {
 return {
 axes: this.getPriceChartAxes(),
 series: this.getPriceChartSeries(),
 windowResponse: "deferred",
 horizontalZoomable: true,
 width: "100%",
 height: this.desiredHeight,
 leftMargin: 0,
 rightMargin: 30,
 windowRectMinWidth: 0.05,
 syncChannel: "channel1",
 synchronizeVertically: false,
 syncrhonizeHorizontally: false
 };
}

In the above listing:

•	 Chart’s syncChannel property is set so the chart can be
synced with other charts of the application to intimate
functionalities of other controls such as ZoomBar. Charts
synced in same channel can use single zoom bar for zoom
in and zoom out functionalities.

•	 Chart’s windowResponse property is set to “deferred” so the
chart view update will defer until after the user action is
complete. Another possible value is “immediate.”

STEP 7: Initialize Chart Option and Data Source

To initialize chart option and data source, in pricechart.component.ts file, modify
ngOnInit() function as shown in the listing below:

ngOnInit() {
 this.stocks = this.getData();
 this.desiredHeight = 0.22 * (window.screen.height) + "px";
 this.chartOptions = this.getPriceChartOptions();
}

366 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

STEP 8: Create Chart

To create a chart, open pricechart.component.html file and the add markup given
below:

<ig-data-chart [(options)]="chartOptions" [(dataSource)]="stocks" widgetId="price-
chart"></ig-data-chart>

STEP 9: Use in Application

To use PriceChartComponent in an application, in the app folder, open app.compo-
nent.html file and add below code just after the <info-screen> element and before
<indicatorchart> element.

<pricechart></pricechart>

 Navigate to the application, scroll down, and at the bottom of the page, you will find
chart added as shown in the image below:

Conclusion

Ignite UI is useful in writing web applications quickly. In addition to Angular, you
can use Ignite UI in React, AngularJS, jQuery, and ASP.NET MVC. In this lesson, you
learned how to use Ignite UI Data Charts in an Angular application.

367See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

3
Sort, Filter, and Page Fast With

Ignite UI Grid

Ignite UI enables you to write web applications faster. You can use Ignite UI library
with HTML5, jQuery, Angular, React, or ASP.NET MVC. It helps you to solve complex
LOB requirements faster. The Ignite UI library makes it possible for you to quickly and
efficiently add a fast, responsive grid with features like pagination, sorting, search,
virtualization, and more.

In addition to seamlessly rendering large sets of data, IgniteUI Grid is loaded with
many other features, such as filtering, paging, and sorting. You can learn more about
Ignite UI features at http://www.igniteui.com; you can also learn more about Angular
in Angular Essentials, a free eBook published by Infragistics.

In this lesson, you will learn how to configure various important features of Ignite
UI Grid.

Lesson Objective

1.	 Enable sorting on the grid
2.	 Enable filters on the grid
3.	 Enable paging on the grid

For more information on the controls used in this lesson, see http://infragistics.com/
products/IgniteUI/grids/data-grid.

At the end of this lesson, you will have an Ignite UI Grid configured for basic features
such as sorting, filtering, and pagination in an Angular application.

You can learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igni-
teui-angular2 .

368 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After downloading the project, navigate to Finance App directory and run the com-
mands below:

npm install
npm start

You executed npm install command to install all dependencies, and to use the npm
start command to run the Angular application. If the project setup is correct, you
will have a running Angular application as shown in the image below.

Scroll to bottom of the application and you will find the Ignite UI Grid. At the end of
the lesson, this grid will be configured with sorting, paging, and filter features.

STEP 1: Enable Sorting

You can enable sorting on Ignite UI Grid by adding a feature with the name “Sorting”
in the grid. Ignite UI Grid supports local and remote sorting.

To enable local sorting, create an object with the following properties and add it to
the features property of the grid option:

•	 name : set to Sorting
•	 type : set to local

369

Sort, Filter, and Page Fast With Ignite UI Grid

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 3

To do this, in the App folder, open the file grid.component.ts and add below getGrid-
Features() function just after the getData() function.

getGridFeatures()
{
 return [
 {
 name: "Sorting",
 type: "local"
 }
];
}

Next, add sorting features to the grid options. For that in the this.gridOptions, add
a new property called feature and set its value to this.getGridFeatures(). Updated
ngOnInit() function in the grid.component.ts file will look like as shown in the code
listed below:

ngOnInit() {
 this.stocks = this.getData();
 this.gridId = "grid1"
 this.gridOptions = {
 dataSource: this.stocks,
 autoGenerateColumns: true,
 features: this.getGridFeatures()
 }
}

Navigate to the application, scroll down, and at the bottom of the page, you will find
the grid added as shown below:

Click on any of the columns and you will find that the grid is sorted for that particular
column as shown in the image above. In addition, you will notice that sorted column
headers have sorting indicators applied, so sortable columns are distinguished visually

370 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

from the rest of the columns in the grid. Ignite UI also supports sorting on multiple
columns.

You have configured sorting locally. Ignite UI also supports remote sorting. Learn
more here: http://www.igniteui.com/grid/sorting-remote

STEP 2: Enable Paging

You can enable paging on Ignite UI grid by adding a feature named “Paging” in the
grid. Ignite UI Grid supports local and remote pagination.

To enable local paging, create an object with following properties and add to the
features property of the grid option:

•	 name : set to Paging
•	 type : set to local
•	 pageSize : 5

You can also set show/hide size drop-down or show/hide paging buttons, etc. There-
fore, Paging feature object would look like below

 {
 name: "Paging",
 type: "local",
 pageSize: 5
 }

Add above object in features object array. To do that, open the file grid.component.ts
and modify getGridFeatures() function such that it returns both paging and sorting
features. After adding paging feature, getGridFeatures() function will look like below,

getGridFeatures() {
 return [
 {
 name: "Sorting",
 type: "local"
 },
 {
 name: "Paging",
 type: "local",
 pageSize: 5
 }
];
}

371

Sort, Filter, and Page Fast With Ignite UI Grid

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 3

To test configured grid with paging: navigate to the application, scroll down, and at
the bottom of the page you will find the grid added as shown in the image below:

Ignite UI also supports remote paging. Learn more here: http://www.igniteui.com/
help/iggrid-paging#remote

STEP 3: Enable Filtering

You can enable filter on Ignite UI grid by adding a feature named “Filtering” in the grid.

To enable filtering, create an object with following properties and add to the features
property of the grid option:

•	 name : set to Filtering
•	 allowFiltering : set to true
•	 caseSensitive: set to false/true

Filtering feature object would look like below

 {
 name: "Filtering",
 allowFiltering: true,
 caseSensitive: false
 }

Add above object in features object array. To do that, open the file grid.component.ts
and modify getGridFeatures() function such that it returns paging, sorting and filtering
features. After adding filtering feature, getGridFeatures() function will look like below,

getGridFeatures() {
 return [
 {
 name: "Sorting",
 type: "local"
 },
 {
 name: "Paging",

372 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

 type: "local",
 pageSize: 5
 },
 {
 name: "Filtering",
 allowFiltering: true,
 caseSensitive: false
 }
];
}

To test the configured grid with filtering, navigate to the application, scroll down, and
at the bottom of the page, you will find the grid added as shown below:

As you will find the grid configured with filtering, paging, and sorting.

Conclusion

Ignite UI makes it possible to write your web applications faster. In addition to Angular,
Ignite UI can be used in React, AngularJS, jQuery, and ASP.NET MVC. In this lesson,
you learned to configure a grid for basic features like paging, sorting, and filtering.

373See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

4
Run Fast Using Virtualization in

Ignite UI Grids

Why Virtualization?

Virtualization is a valuable tool when displaying large sets of records to end users. A
virtualized grid can bind to and support a data source of thousands of records, while
providing a responsive experience to the end user using a rapid scroll of the grid.

The Ignite UI igGrid support two types of virtualization

1.	 Continuous Virtualization
2.	 Fixed Virtualization

In fixed virtualization, only the visible rows are rendered in the grid; in continuous
virtualization, a pre-defined number of rows are rendered in the grid. The Ignite UI
grid can be configured for column virtualization, row virtualization, or both. In the
row virtualization, data row will be virtualized; in columns virtualization, columns of
data source will be virtualized. You may choose to enable column virtualization when
you have large number of columns in a data source.

Lesson Objectives

1.	 Configure grid for fixed virtualization
2.	 Configure grid for continuous virtualization

For more information on the controls used in this lesson, see http://infragistics.com/
products/IgniteUI/grids/data-grid.

At the end of the lesson, you will have a working grid configured for virtualization
in an Angular application. You can learn more about Ignite UI Angular 2 here:
https://github.com/IgniteUI/igniteui-angular2; you can also learn more about Angular
in Angular Essentials, a free eBook published by Infragistics.

374 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After downloading the project, navigate to run the commands below:

npm install
npm start

You have executed the npm install command to install all dependencies and the npm
start command to run the Angular application. If the project setup is correct, you
will have a running Angular application with a grid as shown below. If you receive
an error while running the application, stop and run the npm start command again.

The starter project includes a grid that was created with a large set of data. Since
virtualization is not yet enabled on the grid, the grid is taking some time to render all
of the records. In addition, it is rendering all rows at once. For 5,000 rows, the grid is
creating 5,000 row elements on the DOM, which causes the application to run more
slowly and less efficiently. To run the application faster, despite the very large set of
data, you need to configure virtualization on the grid.

The starter project of this lesson contains code to work with REST API in an Angular
application to create a large data set. To work with REST API and server communication,
Angular provides an http class.

Learn more about the http class and server communication in Angular here: https://
angular.io/docs/ts/latest/guide/server-communication.html

375

Run Fast Using Virtualization in Ignite UI Grids

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 4

STEP 1: Enabling Fixed Virtualization

To enable virtualization, you must set these three properties of the Ignite UI grid.

1.	 virtualizationMode
2.	 virtualization
3.	 height

You must set the height property of the grid to enable virtualization. If the height
property is not set, and virtualization is true, Ignite UI will throw an error.

To enable both row and column virtualization, set the value of the virtualization
property to true. The virtualization property can also be set to a numeric value so
whenever a number of records in the data source is more than the specified number,
virtualization will be enabled.

To enable fixed virtualization, set the following properties of the grid:

•	 Set virtualization property to “true”
•	 Set virtulizationMode property to “fixed”
•	 Set height property to some pixel value (ere it will be set

to “300px”)
•	 To configure all of these properties of the grid, in the app

folder: open the grid.component.ts file and update the get-
GridOptions() function as shown in the highlighted listing
below. You are adding three more properties to existing
grid options.

getGridOptions() {
 return {
 width: "100%",
 autoGenerateColumns: false,
 height: "300px",
 virtulization: true,
 virtualizationMode: "fixed",
 columns: [
 { headerText: "ID", key: "Id", dataType: "string",width:"10%" },
 { headerText: "CLOSE", key: "Close", dataType: "number",width:"15%" },
 { headerText: "DATE", key: "Date", dataType: "string",width:"15%" },
 { headerText: "HIGH", key: "High", dataType: "number",width:"15%" },
 { headerText: "LOW", key: "Low", dataType: "number",width:"15%" },
 { headerText: "OPEN", key: "Open", dataType: "number",width:"15%" },
 { headerText: "VOLUME", key: "Volume", dataType: "number",width:"15%"}
]
 };
}

376 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

To test the fixed virtualization: navigate to the application, scroll down, and you will
find the grid configured with fixed virtualization added as shown in the image below:

STEP 2: Enabling Continuous Virtualization

To enable continuous virtualization, set the following properties of the grid:

•	 Set rowVirtualization property to “true”

•	 Set virtulizationMode property to “continuous”

•	 Set height property to some pixel value (ere it will be set
to “300px”)

To configure all of these properties of the grid, in the app folder: open the grid.com-
ponent.ts file and update the getGridOptions() function as shown in the highlighted
listing below

getGridOptions() {
 return {
 width: "100%",
 autoGenerateColumns: false,
 height: "300px",
 rowVirtualization: true,
 virtualizationMode: "continuous",
 columns: [
 { headerText: "ID", key: "Id", dataType: "string" },
 { headerText: "CLOSE", key: "Close", dataType: "number" },
 { headerText: "DATE", key: "Date", dataType: "string" },
 { headerText: "HIGH", key: "High", dataType: "number" },
 { headerText: "LOW", key: "Low", dataType: "number" },
 { headerText: "OPEN", key: "Open", dataType: "number" },
 { headerText: "VOLUME", key: "Volume", dataType: "number" }
]
 };
}

377

Run Fast Using Virtualization in Ignite UI Grids

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 4

To test the continuous virtualization: navigate to the application, scroll down, and
you will find the grid configured with continuous virtualization added as shown in
the image below:

In continuous virtualization, only a portion of the total rows in the data source are
rendered in the DOM. As the user scrolls up and down on the grid, the virtualization
feature determines if the current rows are sufficient to display the next/previous
portion of rows. If new rows are required, the current portion of rows is deleted and
the new portion of rows is created.

Conclusion

In any functional LOB application, you must render thousands of records in a grid.
When an application is rendering thousands of records, the grid should be responsive
during a rapid scroll of the grid. Achieve this by enabling the virtualization feature on
the grid. In this lesson, you learned about configuring a grid for fixed and continuous
virtualization.

378 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Lesson

5
Run Fast with Large Sets of Data in
Ignite UI Data Charts

Ignite UI Data Charts can render thousands of data points very smoothly and are
fastest when rendering large sets of data.

Lesson Objectives

1.	 Configure a data chart to work with REST API
2.	 Create a data chart with large set of data

For more information on the controls used in this lesson, see http://www.infragistics.
com/products/IgniteUI/charts/data-chart.

At the end of this lesson, you will have a data chart configured to work with large sets
of data in an Angular application. You will see that even with a large amount of data,
the chart renders quickly and zooming in and out of the chart is fluid and responsive.

Learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igniteui-angular2;
you can also learn more about Angular in Angular Essentials, a free eBook published
by Infragistics.

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After you download the project, navigate to the directory and run the commands
below:

npm install
npm start

379

Run Fast with Large Sets of Data in Ignite UI Data Charts

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 5

You have executed the npm install command to install all dependencies and the npm
start command to run the Angular application. If the project is setup correctly, you
will have a running Angular application as shown in the image below. If you receive
an error while running the application, stop and run the npm start command again.

Right now, the first chart of the application is configured to work with a small data
set. It is rendering a data source with ten rows and and functioning smoothly so you
can zoom in and zoom out on the chart. Ignite UI data charts are created to work
with large and small data sets. Whether you are rending 10 data points or 1000 data
points, Ignite UI data charts will behave in the same smooth, seamless manner to
help to run the application faster.

To see it in action, modify the chart to work with a large data set returning from a
REST API.

STEP 1: Get Data in a Component

Currently the chart is configured is to work with a small data set, which is configured
in the first line of code in the ngOnInit() function. To get a large data set in the Price-
ChartComponent, you must use AppService in the component . To do so, in the app
folder, open the pricechart.component.ts file, navigate to the ngOnInit() function, and
(in the function) delete the first line of code and make a call to appService getStcoks()
method. Replace only the first line of code as shown below and leave other codes of
ngOnInit() to function as they are.

ngOnInit() {
 this._appService.getStocks()
 .subscribe(
 stocks => this.stocks = stocks,

380 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

 error => this.errorMessage = <any>error);
 this.desiredHeight = 0.22 * (window.screen.height) + "px";
 this.chartOptions = this.getPriceChartOptions();
}

Right now, you are fetching data from AppService in the PriceChartComponent.
The AppService getStocks() method is fetching data from REST API, which has more
than 200 data points. Essentially, you have reconfigured the chart to work with a
large data set.

STEP 2: Run The Application

Navigate to the application and you will see that the Ignite UI data chart is rendering
a large set of data very quickly and smoothly.

Now there are more than 200 data points rendered in the chart.

You can zoom out to a particular data point and the IgniteUI data chart will render in
the same way and help the application run faster.

Conclusion

Ignite UI can be very useful in writing faster web applications. In addition to Angular,
you can use Ignite UI in React, AngularJS, jQuery, and ASP.NET MVC. In this lesson,
you learned how to use Ignite UI data charts with large sets of data in an Angular
application. Various functionalities of Ignite UI data charts, such as zoom in and zoom
out, work seamlessly with both small and large data sets.

381See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

6
Zoom Fast with Ignite UI Zoombar

Ignite UI provides a Zoombar control to zoom range-enabled controls like data charts.
Use Zoombar to zoom in on a widget in a resizable zoom-range window. Zoombar
includes a horizontal scroll bar that can zoom either the whole range or a particular
section of the chart. Zoombar works as a stand-alone control.

Learn more about other Ignite UI features here: http://www.igniteui.com

In this lesson, you will learn to configure Ignite UI Zoombar with a data chart.

Lesson Objective

1.	 Add Zoombar
2.	 Configure Zoombar with a Ignite UI data chart.

For more information on the controls used in this lesson, see http://www.infragistics.
com/products/IgniteUI /other-charts/zoombar.

At the end of this lesson, you will have an Ignite UI data chart that is configured with
Ignite UI Zoombar in an Angular application.

Learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igniteui-an-
gular2; you can also learn more about Angular in Angular Essentials, a free eBook
published by Infragistics.

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

Next, navigate to the Finance App directory and run the commands below:

npm install
npm start

382 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

You have executed the npm install command to install all dependencies, and the npm
start command to run the Angular application. If the project is setup correctly, you
will have a running Angular application as shown in the image below. In addition,
while working through the lesson, if you receive an error while running the application,
stop and run the npm start command again.

STEP 1: Import and Declare the Component

To work with Ignite UI Angular components, you must import and declare them in
the module. For example, to use the igGrid component in an Angular application,
import and declare the IgGridComponent in the application module.

Navigate to the Finance App folder and then the app folder. Open the file app.module.
ts, and add below import statements, just after all of the existing import statements:

import { IgZoombarComponent } from 'igniteui-angular2';

After importing the required components, you must declare them in the application
module. Add IgZoombarComponent in the AppModule’s declaration array. Modify @
NgModule decorator in app.module.ts as shown below:

@NgModule({
 imports: [BrowserModule, HttpModule],
 declarations: [AppComponent,
 IgDataChartComponent,
 InfoComponent,
 IndicatorChartComponent,
 VolumeChartComponent,

383

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 6

 IgGridComponent,
 GridComponent,
 PriceChartComponent,
 IgZoombarComponent,
],
 providers: [AppService],
 bootstrap: [AppComponent]
})

You have added IgZoombarComponent in the declaration array of the AppModule
module. Other added components and other properties, like providers, will be
reviewed in subsequent lessons.

STEP 2: Add Zoombar

To work with Ignite UI Zoombar, you must first add the Zoombar component. In the
app\charts folder, open the volumechart.component.html file and add the ig-zoombar
control as shown below, just after the ig-data-chart control:

<ig-zoombar [(options)]="zoombarOptions" widgetId="zoombar"></ig-zoombar>

STEP 3: Add Zoombar Options Property

In the Zoombar option, you can attach a chart to the Zoombar.To configure the
Zoombar option, create a property in the VolumeChartComponent class. In the app\
charts folder, open the volumechart.component.ts file and, just above the constructor,
add the property listed below:

private zoombarOptions: IgZoombar;

STEP 4: Attach Chart to Zoombar

To attach a chart widget to Zoombar, you must set the target property value of
Zoombar options to the ID of the chart widget. In the app\charts folder, open the
volumechart.component.ts file and the code below just after the this.chartOptions
assignment in the ngOnInit() function:

this.zoombarOptions = {
 target: "#volumechart"
};

In the above listing, volumechart is the ID of the data chart widget.

384 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

STEP 5: Run the Application

Navigate to application, scroll down, and at the bottom of the page, you will find
Zoombar added as shown in the image below:

The chart has been cloned in the Zoombar and, by using the horizontal scroll bar, you
can zoom the chart. You will find animation while zooming in and out is very fast and
smooth. Regardless of doeshow many data points are rendered in the chart, Ignite UI
Zoombar will zoom in on a particular section very quickly and with smooth animation.

Conclusion

Ignite UI can be very helpful in writing and running web applications more quickly.
In addition to Angular, you may use Ignite UI in React, AngularJS, jQuery, and ASP.NET
MVC. In this lesson, you learned how to configure Ignite UI Zoombar in an Angular
application.

385See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

7
Ignite UI With Different

Package Managers

Ignite UI works with popular package managers to manage the dependencies of the
project. The most popular package managers are:

•	 NPM
•	 Yarn
•	 JSPM

STEP 1: Working With NPM

In previous lessons, you have used NPM to work with Ignite UI controls. To see in
how NPM works, download the starter project (you’ll also find the final version of the
project here), open the terminal, and run the command listed below:

npm install

NPM install commands install the dependencies. It reads package.json file to install
all the dependencies. to work with NPM, you must have NodeJS installed. If you do
not have NodeJS installed, you can install it from https://nodejs.org/en/. After running
NPM install command, you will find folder node_modules added in your project. This
folder contains all the libraries installed using command NPM install.

If you are working on an existing project, then you may install the individual package
in the project. To install the Ignite UI package individually, execute the following
command:

npm install –save-dev igniteui-angular2

To run the application, execute the command below:

npm start

386 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

STEP 2: Working with Yarn

NPM is one of the most popular package managers, but it has some shortcomings,
including:

•	 Nested dependencies, which causes a long file path on
Windows

•	 NPM does only sequential installation, so one package must
be completely installed before moving to the install of the
next package

•	 It can only install from the NPMSJS package and it does not
have offline installation.

Yarn solves these problems. Yarn is a fast, reliable, and secure package manager. It
takes packages from npmjs or bower registry. Although Yarn has advantages over
NPM, NPM is still widely used and is the most popular package manager.

You can learn more about Yarn on their github page here: https://github.com/Yarnpkg/Yarn.

Like NPM, Yarn also reads package.json files of your project to install dependencies.

To work with Yarn, download the start project and open it in the terminal.

If you do not have Yarn installed on your machine, you must install it with the com-
mand below:

npm install –g yarn

387

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 7

NOTE: If you are using Apple’s Mac OS, you may receive
permission errors when you try to install global packages
with NPM. If this happens, try:

 sudo npm install –g yarn

After installing Yarn, you can use Yarn to install dependencies in your project. Like
npm, Yarn also reads package.json to install dependencies. To install dependencies,
run the command below:

yarn install

If you are working on an existing project, you may also install an individual package
in the project. To install the Ignite UI package, execute the command below:

yarn add -dev igniteui-angular2

After successful installation, you will find a node_modules folder added in the project.
To run the application, execute the command below:

yarn start

If everything is correct, the above command should start the application and you
will have a running application as shown below:

388 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Working With Dynamic Module Loaders

SystemJS is a module loader that can import a module at run-time and is built on the
top of the ES6 module loader. It can transpile ES6 code or TypeScript. SystemJS can
work with many types of modules formats such as AMD and CommonJS. SystemJS
module loader can also work with Ignite UI modules and support it.

In the downloaded project, open the System.config.js file and you will find mapping
for Ignite UI Angular 2 as shown in the listing below:

'igniteui-angular2': 'npm:igniteui-angular2'

In addition, you can find the Ignite UI package for loading as shown below:

'igniteui-angular2': {
 main: 'index.js',
 defaultExtension: 'js'
}

Due to packaging and mapping information in system.config.js, when the Angular
application needs Ignite UI modules, it will be dynamically loaded by SystemJS in
the application.

Conclusion

In web development, adding references of libraries has come a long way. It began
with adding references manually in the project, then using Content Delivery Networks
(CDN) to add references, and then various package managers such as bower, NPM,
and Yarn came to existence. Ignite UI can be used with previous ways of managing
packages like CDN or can be used with modern package managers such as NPM and
Yarn. In addition to package managers, Ignite UI can be used with popular module
loaders like SystemJS.

389See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

8
Write React JS Apps with Ignite UI

Ignite UI fully supports modern web development. In addition to Angular, you can
use Ignite UI library in React. This lesson will demonstrate how to use Ignite UI grid
in a React application.

Lesson Objective

•	 Add Ignite UI grid in ReactJS
•	 Configure columns of the grid.

For more information on the controls used in this lesson, see http://infragistics.com/
products/IgniteUI/grids/data-grid.

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

This project is already configured to work with ReactJS and Ignite UI and all references
have been added to the project. You can learn more about using Ignite UI in ReactJS
project here:

http://www.infragistics.com/community/blogs/igniteui_team/archive/2016/11/04/how-
to-use-ignite-ui-components-with-react.aspx

In the starting project for this lesson, in addition to the React and Ignite UI libraries,
you will find following files.

390 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

•	 index.html : contains application markup and references

•	 index.js : contains react code

•	 data.js: contains data to be used as data source of the Ignite
UI grid.

In the project, data.js contains data to be rendered in the Ignite UI grid. File Index.js
contains the App component. In index.js, you can find component class created as
shown in the listing below:

 var App = React.createClass(
 {
 getInitialState: function()
 {
 return{
 }
 },
 render: function()
 {
 return(
 <h2>Ignite UI Grid will be rendered here</h2>
)
 }
 });
 ReactDOM.render(
 <App />,
 document.getElementById("app")
);

The above App component class contains two functions :

•	 The getInitialState() function simply returns an Object of
initial state

•	 The render() function returns the description of what you
want to render. In the next steps, we will render Ignite UI
grid in the render function of the App component.

You can learn more about React.createClass API here: https://facebook.github.io/react/
docs/react-api.html

On the index.html, as shown in the listing below, you will find that index.js has been
referenced as babel script:

391

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 8

 <div id="app">
 <script type="text/babel" src="index.js">
 </script>
 </div>

In index.html, you will also find references of React, jquery, and Ignite UI libraries.

After downloading the project, navigate to the directory and run the commands
below:

npm install
npm start

You have executed the npm install command to install lite server (web server) depen-
dencies, using the npm start command to run the React application. If everything
is correct, you will find a React application running in the browser as shown below:

STEP 1 : Initialize Initial State

To initialize the grid, you may want to set values for various properties of grid such
as datasource, width, row styles, etc. You can set these grid properties in the getIni-
tialState() function. Open index.js file, and modify the getInitialState() function with
the code below.

getInitialState: function()
 {
 return{
 data: stocks,
 gridWidth: "100%",
 alternateRowStyles: true
 }
 },

392 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

You are creating properties to set the grid’s width, row style, and data source. In
addition, you will find there is already an array called "stocks" in the application.

STEP 2: Render the Grid

To render the grid, you must return it from the render() function of the component
class. To return IgGrid, open index.js and modify the render function as shown below:

render: function()
 {
 return(
 <div>
 <IgGrid id="grid1"
 autoGenerateColumns={true}
 dataSource={this.state.data}
 width={this.state.gridWidth}
 alternateRowStyles={this.state.alternateRowStyles} />
 </div>
)
 }

You are setting dataSource, width, and alternateRowStyles properties with the prop-
erties of the object returned from the getInitialState() function.

Navigate to the application to find the RecatJS application running with the Ignite
UI grid as shown in the image below:

STEP 3 CONFIGURE COLUMNS OF THE GRID

In the previous step, you set autoGenerateColumns to true in order to create a grid.
You can also configure selected columns from the data set to display. To do so, you
must configure columns for the Ignite UI Grid by setting the autoGenerateColumns

393

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 8

property to false and adding the columns property in the grid. Modify the IgGrid in
the render() function as shown in the listing below:

<IgGrid id="grid1"
 autoGenerateColumns={false}
 dataSource={this.state.data}
 width={this.state.gridWidth}
 alternateRowStyles={this.state.alternateRowStyles}
 columns={[
 { headerText: "CLOSE", key: "Close", dataType: "number" },
 { headerText: "DATE", key: "Date", dataType: "date", format: "dateTime" },
 { headerText: "HIGH", key: "High", dataType: "number" },
 { headerText: "LOW", key: "Low", dataType: "number"},
 { headerText: "OPEN", key: "Open", dataType: "number"},
 { headerText: "VOLUME", key: "Volume", dataType: "number"},
]}
 />

Navigate to the application and you will find that a grid has been configured with
the columns.

Conclusion

React is quickly becoming a very popular option for building client-side JavaScript
applications. Enterprises are already looking at using React of their Line of Business
applications. Ignite UI supports modern web development and its controls can be
used with modern web development framework such as React

394 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Lesson

9
Look Great With IgniteUI Themes

As a developer, you want to ensure that your application looks good and works on
all types of devices, including desktops, tablets, and mobile devices. Modern web
applications should be responsive and touch-enabled, but will require a lot of CSS/
SASS /LESS in your application. As a developer, you may not be skilled in CSS or have
the time to learn it for use in your application. IgniteUI can help by providing various
themes, which can be used as they are in your application or you can use the IgniteUI
Theme Generator to create themes as required by your application.

Provided themes:

•	 Infragistics theme
•	 Metro theme
•	 iOS theme
•	 Default bootstrap theme
•	 Superhero bootstrap theme
•	 Yeti bootstrap theme
•	 Flatly bootstrap theme

In addition to these themes, you can use the IgniteUI Bootstrap Theme Generator
to create your own theme. Learn more about IgniteUI Theme Generator at http://
www.igniteui.com/bootstrap-theme-generator/Help; you can also learn more about
Angular in Angular Essentials, a free eBook published by Infragistics.

Setting Up The Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After downloading the project, navigate to the directory and run the commands
below:

npm install
npm start

395

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 9

You have executed the npm install command to install all dependencies and have
used the npm start command to run the Angular application. If the project setup is
correct, you will have a running Angular application as shown in the image below:

The application is currently using the IgniteUI metro theme. In the project, open the
index.html file, navigate to line number 9 to 10, or look for the CSS references in the
head section. You will find that the application is referring to the metro theme from
the IgniteUI CDN as shown in the listing below.

<link href="http://cdn-na.infragistics.com/igniteui/latest/css/themes/metro/infrag-
istics.theme.css" rel="stylesheet" />
<link href="http://cdn-na.infragistics.com/igniteui/latest/css/structure/infragistics.
css" rel="stylesheet" />

To work with any theme, you need a reference of Infragistics.css besides the theme
reference.

STEP 1: Changing to iOS Theme

Change the existing IgniteUI themes easily by switching to the desired theme reference.
To change the theme from the metro theme to the iOS theme, leave the reference of
infragitics.css as it is and modify the IgniteUI theme reference in the index.html head
section as shown in the listing below.

<link href="http://cdn-na.infragistics.com/igniteui/latest/css/themes/ios/infragistics.
theme.css" rel="stylesheet" />

396 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Navigate to the application and you will find that all of the controls have been changed
to the iOS theme. You may notice that the grid’s look and the navigation button's
design have been changed.

STEP 2: Changing to Default Bootstrap Theme

IgniteUI provides a default bootstrap theme. To change the theme to the bootstrap
theme, leave the reference of infragitics.css as it is and modify the IgniteUI theme
reference in the index.html head section as shown in the listing below.

<link href="http://cdn-na.infragistics.com/igniteui/latest/css/themes/bootstrap/
infragistics.theme.css" rel="stylesheet" />

Navigate to the application and you will find that all of the controls have been changed
to the default basic bootstrap theme. The grid’s look and the navigation button's
design have been changed to the bootstrap theme.

397

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 9

STEP 3: Using Your Own Bootstrap Theme

IgniteUI helps you to create your own bootstrap-based theme. Simply upload a
variables.less file in IgniteUI bootstrap theme generator and download the theme
(combination of LESS, Complied CSS and images) to use in your application.

Learn more about IgniteUI theme generator here: http://www.igniteui.com/boot-
strap-theme-generator/Help . IgniteUI theme generator helps you in two possible ways:

1.	 To customize existing IgniteUI themes
2.	 To create new bootstrap theme using the variables.less file.

In previous steps you have used themes provided by IgniteUI. To use your own boot-
strap theme, follow the steps as below. Note that, for this lesson, you do not have
to perform these steps, as a bootstrap-based theme has been added in the project.

1.	 You can create your own variables.less file or use one of the
bootstrap themes from http://bootswatch.com . To use a
theme from bootswatch, select the theme and download
the varibales.less file.

2.	 Upload variables.less file here: http://www.igniteui.com/
bootstrap-theme-generator/Theme/Upload .

3.	 Download the theme and unzip it.
4.	 Save the downloaded theme in your application project.

The project contains a CSS folder, which contains a theme generated by the IgniteUI
theme builder. To use this theme: in the head section of index.html add a reference
of the theme and bootstrap as shown in the listing below. Delete reference of metro

398 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

theme (line number 9) and add the below references just before the ./css/structure/
infragistics.css reference.

<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css"
rel="stylesheet" type="text/css" />
<link href="css/themes/infragistics.theme.css" rel="stylesheet" type="text/css" />

Navigate to the application and you will find that application is using new theme.

Conclusion

In addition to the themes provided by IgniteUI, you can use your own themes or
jQueryUI Theme Roller. Learn more here: http://www.igniteui.com/help/deployment-
guide-styling-and-theming#_Styling_and_Theming_IgniteUI

IgniteUI supports the latest designs available in the modern web development and
allows you to write web applications faster.

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Angular
Essentials

Rabi Kiran (a.k.a. Ravi Kiran) is a developer working on Microsoft
Technologies at Hyderabad. He spends his time on JavaScript frame-
works like AngularJS, latest updates to JavaScript in ES6 and ES7, Web
Components, Node.js and also on several Microsoft technologies
including ASP.NET 5, SignalR and C#. He is an active blogger, and an
author at DotNetCurry and SitePoint. He is rewarded with the Microsoft
MVP (Visual Studio and Dev Tools) and DZone MVB awards for his
contribution to the community. Follow him on twitter @sravi_kiran

Mahesh Sabnis is a DotNetCurry author and Microsoft MVP having
over 17 years of experience in IT education and development. He is a
Microsoft Certified Trainer (MCT) since 2005 and has conducted var-
ious Corporate Training programs for .NET Technologies (all versions).
Follow him on twitter @maheshdotnet

Suprotim Agarwal is the founder of DotNetCurry, DNC Magazine for
Developers, SQLServerCurry and DevCurry. He has also authored a
couple of books, 51 Chapters using jQuery with ASP.NET Controls and
The Absolutely Awesome jQuery CookBook. Suprotim has received the
prestigious Microsoft MVP award for nine times in a row now. In a
professional capacity, he is the CEO of A2Z Knowledge Visuals Pvt Ltd,
a digital group that represents premium web sites and digital publi-
cation. Get in touch with him on Twitter @suprotimagarwal or
at LinkedIn .

About the Authors

