
1See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

1
Write Applications Fast Using

Ignite UI Grid

WRITE WEB APPLICATIONS FASTER with Ignite UI. You can use the Ignite UI
library to help quickly solve complex LOB requirements in HTML5, jQuery, Angular,
React, or ASP.NET MVC. Use the Ignite UI library to add a fast, responsive grid with
many features (like pagination, sorting, search, virtualization etc.). It takes just a few
minutes using a few lines of code. Ignite UI has many controls, data visualizations
charts, and framework elements that are simple to configure and customize. The
ease of Ignite UI control configurations and customizations allows you to create a
web application quickly.

In addition to seamlessly rendering large sets of data, the Ignite UI Grid features
many valuable tools, such as filtering, paging, and sorting. You can learn more about
Ignite UI features at http://www.igniteui.com; you can also learn more about Angular
in Angular Essentials, a free eBook published by Infragistics.

Lesson Objectives

1.	 Add Ignite UI grid
2.	 Configure grid columns

For more information on the controls used in this lesson, see http://infragistics.com/
products/IgniteUI/grids/data-grid.

At the end of this lesson, you will have a working grid configured for columns in an
Angular application.

You can learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igni-
teui-angular2.

2 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Setting up the Project

You may download the starter project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After downloading the project, navigate to the directory and run the commands
below:

npm install
npm start

You have executed the npm install command to install all dependencies, using the
npm start command to run the Angular application. If the project setup is correct,
you will have a running Angular application as shown in the image below:

STEP 1: Import and Declare the Component

To work with Ignite UI Angular components, you must import and declare them in
the module. For example, to use the igGrid component in an Angular application,
import and declare the IgGridComponent in the application module.

In the project, navigate to the Finance App folder and then to the app folder. Open
the file app.module.ts, and add the import statements below, just after the existing
import statements.

import{IgGridComponent} from 'igniteui-angular2';
import {GridComponent} from './grid.component';

After importing the required components, you must declare them in the application
module. Add IgGridComponent and GridComponent in the AppModule’s declaration
array. Modify @NgModule decorator in app.module.ts as shown below:

3

Write Applications Fast Using Ignite UI Grid

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 1

@NgModule({
 imports: [BrowserModule,HttpModule],
 declarations: [AppComponent,
 IgZoombarComponent,
 IgDataChartComponent,
 PriceChartComponent,
 InfoComponent,
 IndicatorChartComponent,
 VolumeChartComponent,
 IgGridComponent, GridComponent],
 providers: [AppService],
 bootstrap: [AppComponent]
})
export class AppModule { }

You have added IgGridComponent and GridComponent in the declaration array of
AppModule module. We will examine other added components and properties (like
providers) in subsequent lessons.

STEP 2: Create a Data Source

You need data to bind to the grid. This data can be a JavaScript array or a JSON object
array and can be local or provided by a REST service.

Ideally, you should create a function to return data in an Angular service so you
can use the data function in multiple components. However, for this lesson, there
is already a function called getData in GridComponent class. This function returns a
JSON object array.

In the app folder, open the file grid.component.ts and find the getData() function. In
later lessons, you will learn how to create a grid that uses data from the REST services.

STEP 3: Get data

To use data returned from the getData() function, call the function inside Angular
ngOnInit() life cycle hook and assign a returned value to the GridComponent property.

Learn more about Angular Life Cycle hooks here: https://angular.io/docs/ts/latest/
guide/lifecycle-hooks.html

In the app folder, open the file grid.component.ts and modify the ngOnInit() function
as shown in the listing below:

ngOnInit(){
 this.stocks = this.getData();
}

4 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

STEP 4: Create a Grid

The Ignite UI Grid component can be used like any other component. In the app folder,
open the file grid.component.html, and add the code as shown in the below listing:

<ig-grid widgetId="grid1" [dataSource]="stocks" [autoGenerateColumns]="true">

STEP 5: Use in an Application

To use the GridComponent in an application: in the app folder, open the app.com-
ponent.html file and add the code below just at the end of all of the markup. Add it
below the
 element.

<grid></grid>

Navigate to the application, scroll down, and, at the bottom of the page, you will find
the grid added as shown in the image below:

STEP 6: Configure Columns of the Grid

In Step 4, you created a grid by setting the autoGenerateColumns property to true.
You didn’t need to configure the columns of the grid and they were generated
automatically.

In many cases you may need to configure columns manually. You can configure
columns and other features such as paging, sorting, and filtering of the grid in the
component class.

To configure columns: in the app folder, open grid.component.ts file, and update
ngOnInit() function in grid.component.ts file with the listing below:

ngOnInit() {
 this.stocks = this.getData();
 this.gridId = "Grid1";

5

Write Applications Fast Using Ignite UI Grid

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 1

 this.gridOptions = {
 dataSource: this.stocks,
 autoGenerateColumns: false,
 columns: [
 { headerText: "CLOSE", key: "Close", dataType: "number" },
 { headerText: "DATE", key: "Date", dataType: "string" },
 { headerText: "HIGH", key: "High", dataType: "number" },
 { headerText: "LOW", key: "Low", dataType: "number" },
 { headerText: "OPEN", key: "Open", dataType: "number" },
 { headerText: "VOLUME", key: "Volume", dataType: "number" }
]
 }
}

STEP 7: Modify The Grid With Configured Columns

Ignite UI grid options and widgetId properties are enabled for two-way data binding,
so any changes in the source will be reflected on the grid. To set options and widgetId
properties: in the app folder, open the file grid.component.html, and modify it as
shown in the below listing:

<ig-grid [(options)]= "gridOptions" [(widgetId)]="gridId">

Navigate to the application and scroll to the bottom of the page to find the grid
added as shown below:

Conclusion

Ignite UI can help you write web applications more quickly. In addition to Angular,
Ignite UI may be used with React, AngularJS, jQuery, and ASP.NET MVC.

6 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Lesson

2
Write Applications Fast Using Ignite
UI Data Charts

Write web applications and solve complex LOB requirements more quickly with Ignite
UI. The Ignite UI library (with HTML5, jQuery, Angular, React, or ASP.NET MVC) can add
complex and dynamic charts to your web application quickly with a few lines of code.

Different types of charts are available in the Ignite UI:

•	 Data Chart: Display data on x-axis and y-axis as bars, lines,
areas etc.

•	 Pie Chart: Display data in a circle, divided into sectors that
each represent a proportion of the total data.

•	 Doughnut Chart: Display data in a circle, with more than one
data series.

There are approximately 50 types of data charts available in Ignite UI. Learn more
about Ignite UI data charts here: http://www.igniteui.com/data-chart/overview; you
can also learn more about Angular in Angular Essentials, a free eBook published by
Infragistics.

Lesson Objectives

1.	 Add Ignite UI DataChart
2.	 Configure data charts for axes, data sources, and series
3.	 Configure data charts for various series types.

For more information on the controls used in this lesson, see http://www.infragistics.
com/products/IgniteUI/charts/data-chart.

At the end of the lesson, you will have a working data chart configured for different
types of series in an Angular application.

Learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igniteui-angular2

7

Write Applications Fast Using Ignite UI Data Charts

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 2

Setting up the Project

Download the starter project for this lesson by clicking here. (You can also download
the final project by clicking here.)

After you download the project, navigate to the Finance App directory and run the
commands below:

npm install
npm start

You have executed the npm install command to install all dependencies and are
using the npm start command to run the Angular application. If the project setup is
correct, you will have a running Angular application as shown below. If you receive
an error while running the application, stop and run the npm start command again.

STEP 1: Import and Declare the Component

To work with Ignite UI Angular components, you must import and declare them in the
module. For example, to use the igDataChart component in an Angular application,
import and declare IgDataChartComponent in the application module.

In the project, navigate to the Finance App folder, and then the app folder. Open the
file app.module.ts, and you will find that igDataChartComponent has been added.
Add the import statements below, after the existing import statements.

import{PriceChartComponent} from './charts/pricechart.component';

8 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

After importing the required components, you must declare them in the application
module. Add PriceChartComponent in the AppModule’s declaration array. Modify @
NgModule decorator in app.module.ts as shown below:

@NgModule({
 imports: [BrowserModule, HttpModule],
 declarations: [AppComponent,
 IgZoombarComponent,
 IgDataChartComponent,
 InfoComponent,
 IndicatorChartComponent,
 VolumeChartComponent,
 IgGridComponent,
 GridComponent,
 PriceChartComponent],
 providers: [AppService],
 bootstrap: [AppComponent]
})

You’ve now added PriceChartComponent in the declaration array of AppModule
module. Other added components and other properties like providers will be outlined
in subsequent lessons.

STEP 2: Create Data Source

The data needed to bind the data chart can be a JavaScript array or a JSON object
array and can be local or be may be provided by a REST service.

Ideally, you should create a function to return data in the Angular service so data
may function in multiple components. However, for this lesson, there is already a
function called getData in PriceChartComponent class, which returns a JSON object
array. In the app\charts folder, open the file pricechart.component.ts and find the
getData() function. In future lessons, you will learn to create a grid which uses data
from the REST services.

STEP 3: Get Data

To use data returned from getData() function, call the function inside the Angular
ngOnInit() life cycle hook and assign returned value to PriceChartComponent property.

Learn more about Angular Life Cycle hooks here: https://angular.io/docs/ts/latest/
guide/lifecycle-hooks.html

In the app\charts folder, open the file pricechart.component.ts and modify the
ngOnInit() function as shown in the listing below:

9

Write Applications Fast Using Ignite UI Data Charts

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 2

ngOnInit() {
 this.stocks = this.getData();
}

STEP 4: Configure Axes

To create a data chart, you must configure the chart options. Usually, chart options
consist of three main properties:

1.	 X and Y axis
2.	 Data source
3.	 Series

Aside from these properties, other important properties are height, width, title, etc.

To configure axes, open the pricechart.component.ts file and directly after the ngO-
nInit() function, add the getPriceChartAxes() function as shown listed below :

getPriceChartAxes() {
 return [
 {
 name: "xAxis",
 type: "categoryX",
 label: "Date"
 },
 {
 name: "yAxis",
 type: "numericY",
 labelLocation: "outsideRight",
 labelExtent: 40
 }
];
}

In the above listing:

•	 X-axis type and Y-axis type are useful to display financial,
scatter, or category price series. Other possible values are
category, numericAngle, categoryDateTimeX, categoryAn-
gle etc.

You can learn about these values and types of charts here: http://www.igniteui.com/
help/igdatachart-series-types

10 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

•	 Y-axis labelExtent value is set to 40, which specifies the size
of the area dedicated to the labels or how far label would
be from the axis.

STEP 5: Configure Series

An Ignite UI data chart can have any number of series, but it must have at least
one series. To add a series in a data chart in the app\charts folder, open pricechart.
component.ts file and directly after the getPriceChartAxes() function, add the get-
PriceChartSeries() function as shown in the listing below:

getPriceChartSeries() {
 return [
 {
 name: "stockSeries",
 type: "splineArea",
 title: "Price Data",
 isHighlightingEnabled: true,
 isTransitionInEnabled: true,
 xAxis: "xAxis",
 yAxis: "yAxis",
 valueMemberPath: "High",
 showTooltip: true,
 Outline: "#00AADE"
 }
];
}

In the above listing:

•	 Series type value is set to splineArea to create Spline Area
series. If you want to create a Line series, set the value of
type to “line”. IgniteUI provides more than 25 possible series
types for the data chart including area, bar, and column.

•	 As a series valueMemberPath, you need to set property
from the data array to be displayed in the chart. Here you
are setting “Hight” property from the data source will be
rendered in the data chart series.

•	 Series isTransitionInEnabled value is set to true to enable
animation when data source is assigned.

STEP 6: Configure Chart Option

You have configured axis and series. Next, configure a chart option. In chart option,
you set all other important properties of a data chart.

11

Write Applications Fast Using Ignite UI Data Charts

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 2

Learn more about chart properties here: http://www.igniteui.com/data-chart/overview

To configure a data chart, in app\charts folder, open pricechart.component.ts file and
directly after getPriceChartSeries () function, add getPriceChartOption() function as
shown in the listing below:

getPriceChartOptions() {
 return {
 axes: this.getPriceChartAxes(),
 series: this.getPriceChartSeries(),
 windowResponse: "deferred",
 horizontalZoomable: true,
 width: "100%",
 height: this.desiredHeight,
 leftMargin: 0,
 rightMargin: 30,
 windowRectMinWidth: 0.05,
 syncChannel: "channel1",
 synchronizeVertically: false,
 syncrhonizeHorizontally: false
 };
}

In the above listing:

•	 Chart’s syncChannel property is set so the chart can be
synced with other charts of the application to intimate
functionalities of other controls such as ZoomBar. Charts
synced in same channel can use single zoom bar for zoom
in and zoom out functionalities.

•	 Chart’s windowResponse property is set to “deferred” so the
chart view update will defer until after the user action is
complete. Another possible value is “immediate.”

STEP 7: Initialize Chart Option and Data Source

To initialize chart option and data source, in pricechart.component.ts file, modify
ngOnInit() function as shown in the listing below:

ngOnInit() {
 this.stocks = this.getData();
 this.desiredHeight = 0.22 * (window.screen.height) + "px";
 this.chartOptions = this.getPriceChartOptions();
}

12 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

STEP 8: Create Chart

To create a chart, open pricechart.component.html file and the add markup given
below:

<ig-data-chart [(options)]="chartOptions" [(dataSource)]="stocks" widgetId="price-
chart"></ig-data-chart>

STEP 9: Use in Application

To use PriceChartComponent in an application, in the app folder, open app.compo-
nent.html file and add below code just after the <info-screen> element and before
<indicatorchart> element.

<pricechart></pricechart>

 Navigate to the application, scroll down, and at the bottom of the page, you will find
chart added as shown in the image below:

Conclusion

Ignite UI is useful in writing web applications quickly. In addition to Angular, you
can use Ignite UI in React, AngularJS, jQuery, and ASP.NET MVC. In this lesson, you
learned how to use Ignite UI Data Charts in an Angular application.

13See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

3
Sort, Filter, and Page Fast With

Ignite UI Grid

Ignite UI enables you to write web applications faster. You can use Ignite UI library
with HTML5, jQuery, Angular, React, or ASP.NET MVC. It helps you to solve complex
LOB requirements faster. The Ignite UI library makes it possible for you to quickly and
efficiently add a fast, responsive grid with features like pagination, sorting, search,
virtualization, and more.

In addition to seamlessly rendering large sets of data, IgniteUI Grid is loaded with
many other features, such as filtering, paging, and sorting. You can learn more about
Ignite UI features at http://www.igniteui.com; you can also learn more about Angular
in Angular Essentials, a free eBook published by Infragistics.

In this lesson, you will learn how to configure various important features of Ignite
UI Grid.

Lesson Objective

1.	 Enable sorting on the grid
2.	 Enable filters on the grid
3.	 Enable paging on the grid

For more information on the controls used in this lesson, see http://infragistics.com/
products/IgniteUI/grids/data-grid.

At the end of this lesson, you will have an Ignite UI Grid configured for basic features
such as sorting, filtering, and pagination in an Angular application.

You can learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igni-
teui-angular2 .

14 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After downloading the project, navigate to Finance App directory and run the com-
mands below:

npm install
npm start

You executed npm install command to install all dependencies, and to use the npm
start command to run the Angular application. If the project setup is correct, you
will have a running Angular application as shown in the image below.

Scroll to bottom of the application and you will find the Ignite UI Grid. At the end of
the lesson, this grid will be configured with sorting, paging, and filter features.

STEP 1: Enable Sorting

You can enable sorting on Ignite UI Grid by adding a feature with the name “Sorting”
in the grid. Ignite UI Grid supports local and remote sorting.

To enable local sorting, create an object with the following properties and add it to
the features property of the grid option:

•	 name : set to Sorting
•	 type : set to local

15

Sort, Filter, and Page Fast With Ignite UI Grid

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 3

To do this, in the App folder, open the file grid.component.ts and add below getGrid-
Features() function just after the getData() function.

getGridFeatures()
{
 return [
 {
 name: "Sorting",
 type: "local"
 }
];
}

Next, add sorting features to the grid options. For that in the this.gridOptions, add
a new property called feature and set its value to this.getGridFeatures(). Updated
ngOnInit() function in the grid.component.ts file will look like as shown in the code
listed below:

ngOnInit() {
 this.stocks = this.getData();
 this.gridId = "grid1"
 this.gridOptions = {
 dataSource: this.stocks,
 autoGenerateColumns: true,
 features: this.getGridFeatures()
 }
}

Navigate to the application, scroll down, and at the bottom of the page, you will find
the grid added as shown below:

Click on any of the columns and you will find that the grid is sorted for that particular
column as shown in the image above. In addition, you will notice that sorted column
headers have sorting indicators applied, so sortable columns are distinguished visually

16 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

from the rest of the columns in the grid. Ignite UI also supports sorting on multiple
columns.

You have configured sorting locally. Ignite UI also supports remote sorting. Learn
more here: http://www.igniteui.com/grid/sorting-remote

STEP 2: Enable Paging

You can enable paging on Ignite UI grid by adding a feature named “Paging” in the
grid. Ignite UI Grid supports local and remote pagination.

To enable local paging, create an object with following properties and add to the
features property of the grid option:

•	 name : set to Paging
•	 type : set to local
•	 pageSize : 5

You can also set show/hide size drop-down or show/hide paging buttons, etc. There-
fore, Paging feature object would look like below

 {
 name: "Paging",
 type: "local",
 pageSize: 5
 }

Add above object in features object array. To do that, open the file grid.component.ts
and modify getGridFeatures() function such that it returns both paging and sorting
features. After adding paging feature, getGridFeatures() function will look like below,

getGridFeatures() {
 return [
 {
 name: "Sorting",
 type: "local"
 },
 {
 name: "Paging",
 type: "local",
 pageSize: 5
 }
];
}

17

Sort, Filter, and Page Fast With Ignite UI Grid

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 3

To test configured grid with paging: navigate to the application, scroll down, and at
the bottom of the page you will find the grid added as shown in the image below:

Ignite UI also supports remote paging. Learn more here: http://www.igniteui.com/
help/iggrid-paging#remote

STEP 3: Enable Filtering

You can enable filter on Ignite UI grid by adding a feature named “Filtering” in the grid.

To enable filtering, create an object with following properties and add to the features
property of the grid option:

•	 name : set to Filtering
•	 allowFiltering : set to true
•	 caseSensitive: set to false/true

Filtering feature object would look like below

 {
 name: "Filtering",
 allowFiltering: true,
 caseSensitive: false
 }

Add above object in features object array. To do that, open the file grid.component.ts
and modify getGridFeatures() function such that it returns paging, sorting and filtering
features. After adding filtering feature, getGridFeatures() function will look like below,

getGridFeatures() {
 return [
 {
 name: "Sorting",
 type: "local"
 },
 {
 name: "Paging",

18 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

 type: "local",
 pageSize: 5
 },
 {
 name: "Filtering",
 allowFiltering: true,
 caseSensitive: false
 }
];
}

To test the configured grid with filtering, navigate to the application, scroll down, and
at the bottom of the page, you will find the grid added as shown below:

As you will find the grid configured with filtering, paging, and sorting.

Conclusion

Ignite UI makes it possible to write your web applications faster. In addition to Angular,
Ignite UI can be used in React, AngularJS, jQuery, and ASP.NET MVC. In this lesson,
you learned to configure a grid for basic features like paging, sorting, and filtering.

19See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

4
Run Fast Using Virtualization in

Ignite UI Grids

Why Virtualization?

Virtualization is a valuable tool when displaying large sets of records to end users. A
virtualized grid can bind to and support a data source of thousands of records, while
providing a responsive experience to the end user using a rapid scroll of the grid.

The Ignite UI igGrid support two types of virtualization

1.	 Continuous Virtualization
2.	 Fixed Virtualization

In fixed virtualization, only the visible rows are rendered in the grid; in continuous
virtualization, a pre-defined number of rows are rendered in the grid. The Ignite UI
grid can be configured for column virtualization, row virtualization, or both. In the
row virtualization, data row will be virtualized; in columns virtualization, columns of
data source will be virtualized. You may choose to enable column virtualization when
you have large number of columns in a data source.

Lesson Objectives

1.	 Configure grid for fixed virtualization
2.	 Configure grid for continuous virtualization

For more information on the controls used in this lesson, see http://infragistics.com/
products/IgniteUI/grids/data-grid.

At the end of the lesson, you will have a working grid configured for virtualization
in an Angular application. You can learn more about Ignite UI Angular 2 here:
https://github.com/IgniteUI/igniteui-angular2; you can also learn more about Angular
in Angular Essentials, a free eBook published by Infragistics.

20 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After downloading the project, navigate to run the commands below:

npm install
npm start

You have executed the npm install command to install all dependencies and the npm
start command to run the Angular application. If the project setup is correct, you
will have a running Angular application with a grid as shown below. If you receive
an error while running the application, stop and run the npm start command again.

The starter project includes a grid that was created with a large set of data. Since
virtualization is not yet enabled on the grid, the grid is taking some time to render all
of the records. In addition, it is rendering all rows at once. For 5,000 rows, the grid is
creating 5,000 row elements on the DOM, which causes the application to run more
slowly and less efficiently. To run the application faster, despite the very large set of
data, you need to configure virtualization on the grid.

The starter project of this lesson contains code to work with REST API in an Angular
application to create a large data set. To work with REST API and server communication,
Angular provides an http class.

Learn more about the http class and server communication in Angular here: https://
angular.io/docs/ts/latest/guide/server-communication.html

21

Run Fast Using Virtualization in Ignite UI Grids

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 4

STEP 1: Enabling Fixed Virtualization

To enable virtualization, you must set these three properties of the Ignite UI grid.

1.	 virtualizationMode
2.	 virtualization
3.	 height

You must set the height property of the grid to enable virtualization. If the height
property is not set, and virtualization is true, Ignite UI will throw an error.

To enable both row and column virtualization, set the value of the virtualization
property to true. The virtualization property can also be set to a numeric value so
whenever a number of records in the data source is more than the specified number,
virtualization will be enabled.

To enable fixed virtualization, set the following properties of the grid:

•	 Set virtualization property to “true”
•	 Set virtulizationMode property to “fixed”
•	 Set height property to some pixel value (ere it will be set

to “300px”)
•	 To configure all of these properties of the grid, in the app

folder: open the grid.component.ts file and update the get-
GridOptions() function as shown in the highlighted listing
below. You are adding three more properties to existing
grid options.

getGridOptions() {
 return {
 width: "100%",
 autoGenerateColumns: false,
 height: "300px",
 virtulization: true,
 virtualizationMode: "fixed",
 columns: [
 { headerText: "ID", key: "Id", dataType: "string",width:"10%" },
 { headerText: "CLOSE", key: "Close", dataType: "number",width:"15%" },
 { headerText: "DATE", key: "Date", dataType: "string",width:"15%" },
 { headerText: "HIGH", key: "High", dataType: "number",width:"15%" },
 { headerText: "LOW", key: "Low", dataType: "number",width:"15%" },
 { headerText: "OPEN", key: "Open", dataType: "number",width:"15%" },
 { headerText: "VOLUME", key: "Volume", dataType: "number",width:"15%"}
]
 };
}

22 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

To test the fixed virtualization: navigate to the application, scroll down, and you will
find the grid configured with fixed virtualization added as shown in the image below:

STEP 2: Enabling Continuous Virtualization

To enable continuous virtualization, set the following properties of the grid:

•	 Set rowVirtualization property to “true”

•	 Set virtulizationMode property to “continuous”

•	 Set height property to some pixel value (ere it will be set
to “300px”)

To configure all of these properties of the grid, in the app folder: open the grid.com-
ponent.ts file and update the getGridOptions() function as shown in the highlighted
listing below

getGridOptions() {
 return {
 width: "100%",
 autoGenerateColumns: false,
 height: "300px",
 rowVirtualization: true,
 virtualizationMode: "continuous",
 columns: [
 { headerText: "ID", key: "Id", dataType: "string" },
 { headerText: "CLOSE", key: "Close", dataType: "number" },
 { headerText: "DATE", key: "Date", dataType: "string" },
 { headerText: "HIGH", key: "High", dataType: "number" },
 { headerText: "LOW", key: "Low", dataType: "number" },
 { headerText: "OPEN", key: "Open", dataType: "number" },
 { headerText: "VOLUME", key: "Volume", dataType: "number" }
]
 };
}

23

Run Fast Using Virtualization in Ignite UI Grids

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 4

To test the continuous virtualization: navigate to the application, scroll down, and
you will find the grid configured with continuous virtualization added as shown in
the image below:

In continuous virtualization, only a portion of the total rows in the data source are
rendered in the DOM. As the user scrolls up and down on the grid, the virtualization
feature determines if the current rows are sufficient to display the next/previous
portion of rows. If new rows are required, the current portion of rows is deleted and
the new portion of rows is created.

Conclusion

In any functional LOB application, you must render thousands of records in a grid.
When an application is rendering thousands of records, the grid should be responsive
during a rapid scroll of the grid. Achieve this by enabling the virtualization feature on
the grid. In this lesson, you learned about configuring a grid for fixed and continuous
virtualization.

24 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Lesson

5
Run Fast with Large Sets of Data in
Ignite UI Data Charts

Ignite UI Data Charts can render thousands of data points very smoothly and are
fastest when rendering large sets of data.

Lesson Objectives

1.	 Configure a data chart to work with REST API
2.	 Create a data chart with large set of data

For more information on the controls used in this lesson, see http://www.infragistics.
com/products/IgniteUI/charts/data-chart.

At the end of this lesson, you will have a data chart configured to work with large sets
of data in an Angular application. You will see that even with a large amount of data,
the chart renders quickly and zooming in and out of the chart is fluid and responsive.

Learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igniteui-angular2;
you can also learn more about Angular in Angular Essentials, a free eBook published
by Infragistics.

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After you download the project, navigate to the directory and run the commands
below:

npm install
npm start

25

Run Fast with Large Sets of Data in Ignite UI Data Charts

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 5

You have executed the npm install command to install all dependencies and the npm
start command to run the Angular application. If the project is setup correctly, you
will have a running Angular application as shown in the image below. If you receive
an error while running the application, stop and run the npm start command again.

Right now, the first chart of the application is configured to work with a small data
set. It is rendering a data source with ten rows and and functioning smoothly so you
can zoom in and zoom out on the chart. Ignite UI data charts are created to work
with large and small data sets. Whether you are rending 10 data points or 1000 data
points, Ignite UI data charts will behave in the same smooth, seamless manner to
help to run the application faster.

To see it in action, modify the chart to work with a large data set returning from a
REST API.

STEP 1: Get Data in a Component

Currently the chart is configured is to work with a small data set, which is configured
in the first line of code in the ngOnInit() function. To get a large data set in the Price-
ChartComponent, you must use AppService in the component . To do so, in the app
folder, open the pricechart.component.ts file, navigate to the ngOnInit() function, and
(in the function) delete the first line of code and make a call to appService getStcoks()
method. Replace only the first line of code as shown below and leave other codes of
ngOnInit() to function as they are.

ngOnInit() {
 this._appService.getStocks()
 .subscribe(
 stocks => this.stocks = stocks,

26 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

 error => this.errorMessage = <any>error);
 this.desiredHeight = 0.22 * (window.screen.height) + "px";
 this.chartOptions = this.getPriceChartOptions();
}

Right now, you are fetching data from AppService in the PriceChartComponent.
The AppService getStocks() method is fetching data from REST API, which has more
than 200 data points. Essentially, you have reconfigured the chart to work with a
large data set.

STEP 2: Run The Application

Navigate to the application and you will see that the Ignite UI data chart is rendering
a large set of data very quickly and smoothly.

Now there are more than 200 data points rendered in the chart.

You can zoom out to a particular data point and the IgniteUI data chart will render in
the same way and help the application run faster.

Conclusion

Ignite UI can be very useful in writing faster web applications. In addition to Angular,
you can use Ignite UI in React, AngularJS, jQuery, and ASP.NET MVC. In this lesson,
you learned how to use Ignite UI data charts with large sets of data in an Angular
application. Various functionalities of Ignite UI data charts, such as zoom in and zoom
out, work seamlessly with both small and large data sets.

27See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

6
Zoom Fast with Ignite UI Zoombar

Ignite UI provides a Zoombar control to zoom range-enabled controls like data charts.
Use Zoombar to zoom in on a widget in a resizable zoom-range window. Zoombar
includes a horizontal scroll bar that can zoom either the whole range or a particular
section of the chart. Zoombar works as a stand-alone control.

Learn more about other Ignite UI features here: http://www.igniteui.com

In this lesson, you will learn to configure Ignite UI Zoombar with a data chart.

Lesson Objective

1.	 Add Zoombar
2.	 Configure Zoombar with a Ignite UI data chart.

For more information on the controls used in this lesson, see http://www.infragistics.
com/products/IgniteUI /other-charts/zoombar.

At the end of this lesson, you will have an Ignite UI data chart that is configured with
Ignite UI Zoombar in an Angular application.

Learn more about Ignite UI Angular 2 here: https://github.com/IgniteUI/igniteui-an-
gular2; you can also learn more about Angular in Angular Essentials, a free eBook
published by Infragistics.

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

Next, navigate to the Finance App directory and run the commands below:

npm install
npm start

28 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

You have executed the npm install command to install all dependencies, and the npm
start command to run the Angular application. If the project is setup correctly, you
will have a running Angular application as shown in the image below. In addition,
while working through the lesson, if you receive an error while running the application,
stop and run the npm start command again.

STEP 1: Import and Declare the Component

To work with Ignite UI Angular components, you must import and declare them in
the module. For example, to use the igGrid component in an Angular application,
import and declare the IgGridComponent in the application module.

Navigate to the Finance App folder and then the app folder. Open the file app.module.
ts, and add below import statements, just after all of the existing import statements:

import { IgZoombarComponent } from 'igniteui-angular2';

After importing the required components, you must declare them in the application
module. Add IgZoombarComponent in the AppModule’s declaration array. Modify @
NgModule decorator in app.module.ts as shown below:

@NgModule({
 imports: [BrowserModule, HttpModule],
 declarations: [AppComponent,
 IgDataChartComponent,
 InfoComponent,
 IndicatorChartComponent,
 VolumeChartComponent,

29

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 6

 IgGridComponent,
 GridComponent,
 PriceChartComponent,
 IgZoombarComponent,
],
 providers: [AppService],
 bootstrap: [AppComponent]
})

You have added IgZoombarComponent in the declaration array of the AppModule
module. Other added components and other properties, like providers, will be
reviewed in subsequent lessons.

STEP 2: Add Zoombar

To work with Ignite UI Zoombar, you must first add the Zoombar component. In the
app\charts folder, open the volumechart.component.html file and add the ig-zoombar
control as shown below, just after the ig-data-chart control:

<ig-zoombar [(options)]="zoombarOptions" widgetId="zoombar"></ig-zoombar>

STEP 3: Add Zoombar Options Property

In the Zoombar option, you can attach a chart to the Zoombar.To configure the
Zoombar option, create a property in the VolumeChartComponent class. In the app\
charts folder, open the volumechart.component.ts file and, just above the constructor,
add the property listed below:

private zoombarOptions: IgZoombar;

STEP 4: Attach Chart to Zoombar

To attach a chart widget to Zoombar, you must set the target property value of
Zoombar options to the ID of the chart widget. In the app\charts folder, open the
volumechart.component.ts file and the code below just after the this.chartOptions
assignment in the ngOnInit() function:

this.zoombarOptions = {
 target: "#volumechart"
};

In the above listing, volumechart is the ID of the data chart widget.

30 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

STEP 5: Run the Application

Navigate to application, scroll down, and at the bottom of the page, you will find
Zoombar added as shown in the image below:

The chart has been cloned in the Zoombar and, by using the horizontal scroll bar, you
can zoom the chart. You will find animation while zooming in and out is very fast and
smooth. Regardless of doeshow many data points are rendered in the chart, Ignite UI
Zoombar will zoom in on a particular section very quickly and with smooth animation.

Conclusion

Ignite UI can be very helpful in writing and running web applications more quickly.
In addition to Angular, you may use Ignite UI in React, AngularJS, jQuery, and ASP.NET
MVC. In this lesson, you learned how to configure Ignite UI Zoombar in an Angular
application.

31See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

7
Ignite UI With Different

Package Managers

Ignite UI works with popular package managers to manage the dependencies of the
project. The most popular package managers are:

•	 NPM
•	 Yarn
•	 JSPM

STEP 1: Working With NPM

In previous lessons, you have used NPM to work with Ignite UI controls. To see in
how NPM works, download the starter project (you’ll also find the final version of the
project here), open the terminal, and run the command listed below:

npm install

NPM install commands install the dependencies. It reads package.json file to install
all the dependencies. to work with NPM, you must have NodeJS installed. If you do
not have NodeJS installed, you can install it from https://nodejs.org/en/. After running
NPM install command, you will find folder node_modules added in your project. This
folder contains all the libraries installed using command NPM install.

If you are working on an existing project, then you may install the individual package
in the project. To install the Ignite UI package individually, execute the following
command:

npm install –save-dev igniteui-angular2

To run the application, execute the command below:

npm start

32 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

STEP 2: Working with Yarn

NPM is one of the most popular package managers, but it has some shortcomings,
including:

•	 Nested dependencies, which causes a long file path on
Windows

•	 NPM does only sequential installation, so one package must
be completely installed before moving to the install of the
next package

•	 It can only install from the NPMSJS package and it does not
have offline installation.

Yarn solves these problems. Yarn is a fast, reliable, and secure package manager. It
takes packages from npmjs or bower registry. Although Yarn has advantages over
NPM, NPM is still widely used and is the most popular package manager.

You can learn more about Yarn on their github page here: https://github.com/Yarnpkg/Yarn.

Like NPM, Yarn also reads package.json files of your project to install dependencies.

To work with Yarn, download the start project and open it in the terminal.

If you do not have Yarn installed on your machine, you must install it with the com-
mand below:

npm install –g yarn

33

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 7

NOTE: If you are using Apple’s Mac OS, you may receive
permission errors when you try to install global packages
with NPM. If this happens, try:

 sudo npm install –g yarn

After installing Yarn, you can use Yarn to install dependencies in your project. Like
npm, Yarn also reads package.json to install dependencies. To install dependencies,
run the command below:

yarn install

If you are working on an existing project, you may also install an individual package
in the project. To install the Ignite UI package, execute the command below:

yarn add -dev igniteui-angular2

After successful installation, you will find a node_modules folder added in the project.
To run the application, execute the command below:

yarn start

If everything is correct, the above command should start the application and you
will have a running application as shown below:

34 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Working With Dynamic Module Loaders

SystemJS is a module loader that can import a module at run-time and is built on the
top of the ES6 module loader. It can transpile ES6 code or TypeScript. SystemJS can
work with many types of modules formats such as AMD and CommonJS. SystemJS
module loader can also work with Ignite UI modules and support it.

In the downloaded project, open the System.config.js file and you will find mapping
for Ignite UI Angular 2 as shown in the listing below:

'igniteui-angular2': 'npm:igniteui-angular2'

In addition, you can find the Ignite UI package for loading as shown below:

'igniteui-angular2': {
 main: 'index.js',
 defaultExtension: 'js'
}

Due to packaging and mapping information in system.config.js, when the Angular
application needs Ignite UI modules, it will be dynamically loaded by SystemJS in
the application.

Conclusion

In web development, adding references of libraries has come a long way. It began
with adding references manually in the project, then using Content Delivery Networks
(CDN) to add references, and then various package managers such as bower, NPM,
and Yarn came to existence. Ignite UI can be used with previous ways of managing
packages like CDN or can be used with modern package managers such as NPM and
Yarn. In addition to package managers, Ignite UI can be used with popular module
loaders like SystemJS.

35See videos of these lessons online: infragistics.com/products/ignite-ui/

Lesson

8
Write React JS Apps with Ignite UI

Ignite UI fully supports modern web development. In addition to Angular, you can
use Ignite UI library in React. This lesson will demonstrate how to use Ignite UI grid
in a React application.

Lesson Objective

•	 Add Ignite UI grid in ReactJS
•	 Configure columns of the grid.

For more information on the controls used in this lesson, see http://infragistics.com/
products/IgniteUI/grids/data-grid.

Setting up the Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

This project is already configured to work with ReactJS and Ignite UI and all references
have been added to the project. You can learn more about using Ignite UI in ReactJS
project here:

http://www.infragistics.com/community/blogs/igniteui_team/archive/2016/11/04/how-
to-use-ignite-ui-components-with-react.aspx

In the starting project for this lesson, in addition to the React and Ignite UI libraries,
you will find following files.

36 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

•	 index.html : contains application markup and references

•	 index.js : contains react code

•	 data.js: contains data to be used as data source of the Ignite
UI grid.

In the project, data.js contains data to be rendered in the Ignite UI grid. File Index.js
contains the App component. In index.js, you can find component class created as
shown in the listing below:

 var App = React.createClass(
 {
 getInitialState: function()
 {
 return{
 }
 },
 render: function()
 {
 return(
 <h2>Ignite UI Grid will be rendered here</h2>
)
 }
 });
 ReactDOM.render(
 <App />,
 document.getElementById("app")
);

The above App component class contains two functions :

•	 The getInitialState() function simply returns an Object of
initial state

•	 The render() function returns the description of what you
want to render. In the next steps, we will render Ignite UI
grid in the render function of the App component.

You can learn more about React.createClass API here: https://facebook.github.io/react/
docs/react-api.html

On the index.html, as shown in the listing below, you will find that index.js has been
referenced as babel script:

37

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 8

 <div id="app">
 <script type="text/babel" src="index.js">
 </script>
 </div>

In index.html, you will also find references of React, jquery, and Ignite UI libraries.

After downloading the project, navigate to the directory and run the commands
below:

npm install
npm start

You have executed the npm install command to install lite server (web server) depen-
dencies, using the npm start command to run the React application. If everything
is correct, you will find a React application running in the browser as shown below:

STEP 1 : Initialize Initial State

To initialize the grid, you may want to set values for various properties of grid such
as datasource, width, row styles, etc. You can set these grid properties in the getIni-
tialState() function. Open index.js file, and modify the getInitialState() function with
the code below.

getInitialState: function()
 {
 return{
 data: stocks,
 gridWidth: "100%",
 alternateRowStyles: true
 }
 },

38 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

You are creating properties to set the grid’s width, row style, and data source. In
addition, you will find there is already an array called "stocks" in the application.

STEP 2: Render the Grid

To render the grid, you must return it from the render() function of the component
class. To return IgGrid, open index.js and modify the render function as shown below:

render: function()
 {
 return(
 <div>
 <IgGrid id="grid1"
 autoGenerateColumns={true}
 dataSource={this.state.data}
 width={this.state.gridWidth}
 alternateRowStyles={this.state.alternateRowStyles} />
 </div>
)
 }

You are setting dataSource, width, and alternateRowStyles properties with the prop-
erties of the object returned from the getInitialState() function.

Navigate to the application to find the RecatJS application running with the Ignite
UI grid as shown in the image below:

STEP 3 CONFIGURE COLUMNS OF THE GRID

In the previous step, you set autoGenerateColumns to true in order to create a grid.
You can also configure selected columns from the data set to display. To do so, you
must configure columns for the Ignite UI Grid by setting the autoGenerateColumns

39

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 8

property to false and adding the columns property in the grid. Modify the IgGrid in
the render() function as shown in the listing below:

<IgGrid id="grid1"
 autoGenerateColumns={false}
 dataSource={this.state.data}
 width={this.state.gridWidth}
 alternateRowStyles={this.state.alternateRowStyles}
 columns={[
 { headerText: "CLOSE", key: "Close", dataType: "number" },
 { headerText: "DATE", key: "Date", dataType: "date", format: "dateTime" },
 { headerText: "HIGH", key: "High", dataType: "number" },
 { headerText: "LOW", key: "Low", dataType: "number"},
 { headerText: "OPEN", key: "Open", dataType: "number"},
 { headerText: "VOLUME", key: "Volume", dataType: "number"},
]}
 />

Navigate to the application and you will find that a grid has been configured with
the columns.

Conclusion

React is quickly becoming a very popular option for building client-side JavaScript
applications. Enterprises are already looking at using React of their Line of Business
applications. Ignite UI supports modern web development and its controls can be
used with modern web development framework such as React

40 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Lesson

9
Look Great With IgniteUI Themes

As a developer, you want to ensure that your application looks good and works on
all types of devices, including desktops, tablets, and mobile devices. Modern web
applications should be responsive and touch-enabled, but will require a lot of CSS/
SASS /LESS in your application. As a developer, you may not be skilled in CSS or have
the time to learn it for use in your application. IgniteUI can help by providing various
themes, which can be used as they are in your application or you can use the IgniteUI
Theme Generator to create themes as required by your application.

Provided themes:

•	 Infragistics theme
•	 Metro theme
•	 iOS theme
•	 Default bootstrap theme
•	 Superhero bootstrap theme
•	 Yeti bootstrap theme
•	 Flatly bootstrap theme

In addition to these themes, you can use the IgniteUI Bootstrap Theme Generator
to create your own theme. Learn more about IgniteUI Theme Generator at http://
www.igniteui.com/bootstrap-theme-generator/Help; you can also learn more about
Angular in Angular Essentials, a free eBook published by Infragistics.

Setting Up The Project

You can download the starting project for this lesson by clicking here. (You can also
download the final project by clicking here.)

After downloading the project, navigate to the directory and run the commands
below:

npm install
npm start

41

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 9

You have executed the npm install command to install all dependencies and have
used the npm start command to run the Angular application. If the project setup is
correct, you will have a running Angular application as shown in the image below:

The application is currently using the IgniteUI metro theme. In the project, open the
index.html file, navigate to line number 9 to 10, or look for the CSS references in the
head section. You will find that the application is referring to the metro theme from
the IgniteUI CDN as shown in the listing below.

<link href="http://cdn-na.infragistics.com/igniteui/latest/css/themes/metro/infrag-
istics.theme.css" rel="stylesheet" />
<link href="http://cdn-na.infragistics.com/igniteui/latest/css/structure/infragistics.
css" rel="stylesheet" />

To work with any theme, you need a reference of Infragistics.css besides the theme
reference.

STEP 1: Changing to iOS Theme

Change the existing IgniteUI themes easily by switching to the desired theme reference.
To change the theme from the metro theme to the iOS theme, leave the reference of
infragitics.css as it is and modify the IgniteUI theme reference in the index.html head
section as shown in the listing below.

<link href="http://cdn-na.infragistics.com/igniteui/latest/css/themes/ios/infragistics.
theme.css" rel="stylesheet" />

42 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

Navigate to the application and you will find that all of the controls have been changed
to the iOS theme. You may notice that the grid’s look and the navigation button's
design have been changed.

STEP 2: Changing to Default Bootstrap Theme

IgniteUI provides a default bootstrap theme. To change the theme to the bootstrap
theme, leave the reference of infragitics.css as it is and modify the IgniteUI theme
reference in the index.html head section as shown in the listing below.

<link href="http://cdn-na.infragistics.com/igniteui/latest/css/themes/bootstrap/
infragistics.theme.css" rel="stylesheet" />

Navigate to the application and you will find that all of the controls have been changed
to the default basic bootstrap theme. The grid’s look and the navigation button's
design have been changed to the bootstrap theme.

43

Zoom Fast with Ignite UI Zoombar

Download the Code: infragistics.com/products/ignite-ui/angular-essentials-get-the-code

Lesson 9

STEP 3: Using Your Own Bootstrap Theme

IgniteUI helps you to create your own bootstrap-based theme. Simply upload a
variables.less file in IgniteUI bootstrap theme generator and download the theme
(combination of LESS, Complied CSS and images) to use in your application.

Learn more about IgniteUI theme generator here: http://www.igniteui.com/boot-
strap-theme-generator/Help . IgniteUI theme generator helps you in two possible ways:

1.	 To customize existing IgniteUI themes
2.	 To create new bootstrap theme using the variables.less file.

In previous steps you have used themes provided by IgniteUI. To use your own boot-
strap theme, follow the steps as below. Note that, for this lesson, you do not have
to perform these steps, as a bootstrap-based theme has been added in the project.

1.	 You can create your own variables.less file or use one of the
bootstrap themes from http://bootswatch.com . To use a
theme from bootswatch, select the theme and download
the varibales.less file.

2.	 Upload variables.less file here: http://www.igniteui.com/
bootstrap-theme-generator/Theme/Upload .

3.	 Download the theme and unzip it.
4.	 Save the downloaded theme in your application project.

The project contains a CSS folder, which contains a theme generated by the IgniteUI
theme builder. To use this theme: in the head section of index.html add a reference
of the theme and bootstrap as shown in the listing below. Delete reference of metro

44 Try Infragistics Ignite UI Free: Infragistics.com/ignite-ui

theme (line number 9) and add the below references just before the ./css/structure/
infragistics.css reference.

<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css"
rel="stylesheet" type="text/css" />
<link href="css/themes/infragistics.theme.css" rel="stylesheet" type="text/css" />

Navigate to the application and you will find that application is using new theme.

Conclusion

In addition to the themes provided by IgniteUI, you can use your own themes or
jQueryUI Theme Roller. Learn more here: http://www.igniteui.com/help/deployment-
guide-styling-and-theming#_Styling_and_Theming_IgniteUI

IgniteUI supports the latest designs available in the modern web development and
allows you to write web applications faster.

