
By Charles Pluta

Published By:

TIPS AND TRAPS

TOP TEN

Write fast, run fast with Infragistics Ultimate UI for Xamarin

 Free Trial: Click to Download Now

http://bit.ly/UltimateXamarin
http://bit.ly/UltimateXamarin

Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

© 2017 Infragistics
All rights reserved
www.infragistics.com

Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

A Note from Infragistics

THANKS FOR CHECKING OUT Top 10 Xamarin Tips and Traps. Whether you are
an experienced or new mobile app developer, the ten topics presented in this eBook
provide insights into Xamarin’s capabilities and resources to help you get started with
it. Among the topics you’ll learn about:

• accessing Xamarin and GitHub resources
• versioning with Xamarin
• integrating NuGet packages
• increasing app performance
• rendering data natively

If you’re considering writing apps in Xamarin, you probably already know that it
enables you to create cross-platform native apps that run on Apple iOS, Android, and
Universal Windows Platform (UWP). You also probably know that the Xamarin SDK
and its .NET core are open source development platforms for iOS, Android, Universal
Windows Platform (UWP), and Mac.

You might also think you know about Xamarin’s design-time trade-offs for its cross-plat-
form code sharing. Why the italics? Because a new tool from Infragistics—Ultimate
UI for Xamarin—eliminates those trade-offs and makes Xamarin app development
a no-compromise solution.

Meet—and Try—Ultimate UI for Xamarin

Xamarin is a versatile development framework, and this book will give you valuable tips
on how to use it. We think you’ll go even farther, faster, if you also check out Infragistics
Ultimate UI for Xamarin before you start coding. Ultimate UI for Xamarin combines
lightning-fast controls with a RAD WYSIWYG design-time experience, empowering
you to build beautiful, quality, high-performing applications with a rich UX and a
robust feature set.

Ultimate UI for Xamarin includes flexible iOS, Android, and Xamarin.Forms controls
designed for the most demanding apps, outperforming all other Xamarin controls on
the market. Ultimate UI for Xamarin also includes the ground-breaking Xamarin.Forms
Productivity Pack, delivering unparalleled time-savings and productivity for Xamarin.
Forms developers. The Productivity Pack includes “AppMap,” a visual page-creation
tool call, and control configurators which eliminate the need for manual XAML coding,
greatly speeding up app control layout. You’ll also get page templates and code
snippets.

http://infragistics.com/products/xamarin

Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

• It’s Fast: Even with real-time and large data sets, no
other Xamarin grids and data chart controls outperform
Infragistics Ultimate UI for Xamarin.

• It’s Versatile: Ultimate UI for Xamarin includes iOS and
Android native controls, along with Xamarin.Forms
controls for maximum code-sharing.

• It’s Easy to Use: AppMap, control configurators, and
templates enable rapid application view and view model
creation and visual control configuration.

• It’s Easy to Learn: Visual control configurators enable you
to easily and rapidly learn rich Xamarin Forms controls.

In short, Ultimate UI for Xamarin is the first no-compromise library of controls and
productivity tools for Xamarin. And you can try it right now for free.

Learn More

Once you install Ultimate UI for Xamarin, get productive in just a few minutes with
six write fast, run fast lessons for you to watch, read, and try.

When you’re ready to dig in a little more deeply, check out Moo2U—an end-to-end,
best practices Xamarin.Forms reference application, built with Ultimate UI for Xamarin’s
Productivity Pack and UI widgets. Moo2U not only demonstrates how to build a stylish,
scalable Xamarin.Forms app.

We look forward to hearing how you like this book…and how we expect and hope
you’ll love Ultimate UI for Xamarin.

Best,

Ken Rosen (krosen@infragistics.com)
Sr. Director, Product Management
Infragistics

http://www.infragistics.com/products/xamarin/download
http://infragistics.com/products/xamarin/write-fast
http://infragistics.com/products/xamarin/run-fast
http://www.infragistics.com/resources/sample-applications/xamarin-moo2u-app

Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Contents

#1: TIP—Accessing Xamarin resources. 1

#2: TIP—Using GitHub resources . 5

#3: TRAP—Deploying and testing with emulators. 8

#4: TIP—Using NuGet .14

#5: TIP—Implementing grid layouts with Xamarin .18

#6: TIP—Optimizing data rendering across platforms .21

#7: TIP—Boosting cross-platform performance in Xamarin. .24

#8: TRAP—Using control and data templates .30

#9: TIP—Using .NET Core .33

#10: TIP—Releasing an Android app. .35

#11: TIP—Using the Prism framework .39

Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

1Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#1
TIP

Accessing Xamarin resources

LEARNING HOW TO USE Xamarin and its components to develop native appli-
cations is like learning how to ride a bicycle: It might seem difficult or complicated at
first, but becomes simple with practice. As with anything that you learn to do the first
time, preparation is a crucial element of success. There are common pitfalls, mistakes,
or oversights that can occur for even the most experienced developer. Fortunately,
there are tons (literally, if you printed them!) of resources available to help ensure
your success. These include resources from the following providers: Xamarin SDKs

• Xamarin University
• Xamarin Developer Center
• Xamarin on edX
• Microsoft Virtual Academy
• Third-party resources

Xamarin SDKs

The source code for Xamarin.iOS, Xamarin.Mac, Xamarin.Android, and Xamarin.Forms
is available from the Xamarin website at http://open.xamarin.com as well as on the
Xamarin GitHub. The open source nature of Xamarin enables you to create native
apps for any device in C# or F#. You can also take advantage of open source bindings
and native libraries for Facebook and Google Play, as well as useful functions such as
messaging and GPS.

The source code, bindings, and libraries are available through the Xamarin GitHub.
(For more information, see TIP: Using GitHub resources.)

Xamarin University

Xamarin University is an online platform that provides live and interactive training,
including five free, on-demand classes in the Visual Studio Dev Essentials program.
Xamarin University also offers self-guided classes, such as those shown in Figure 1,
that you can work through at your own pace to learn Xamarin.

http://open.xamarin.com

2 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Figure 1: The first few classes in the Xamarin University portal.

Xamarin University also offers a Xamarin certification. You can combine the instruction
from the self-guided classes, videos, and other available resources to complete the
certification. You can access Xamarin University at https://university.xamarin.com.

Xamarin Developer Center

The Xamarin Developer Center provides a collection of online resources that help
you successfully develop mobile apps. The Developer Center includes Xamarin doc-
umentation, guides, workbooks, recipes, samples, and more for the various platforms.
Dozens of guides are available for cross-platform development and for individual
platforms. Figure 2 shows the current categories of Xamarin Developer Center content.

Figure 2: Xamarin Developer Center category links.

Some of the resources available from the Developer Center include:

• Interactive workbooks that enable you to experiment
and explore within real projects. You can edit code and
text to customize the project and practice using different

https://university.xamarin.com

3

#1: TIP —Accessing Xamarin resources

components of Xamarin. Workbooks are available for
Azure, Mac, mobile and other platforms.

• Recipes that document a specific Xamarin component or
resource. Recipes are available for the GPS, accelerometer,
geocoder, and other device resources.

• APIs and sample projects that use common Xamarin
features. Samples of 3-D scenes, physics manipulation,
animation, rendering, lighting, and other features are
available for various platforms.

• Add-in components for Xamarin and Visual Studio that
simplify or add configuration utilities to the development
process. Components are available for cloud services,
plug-ins, themes, development resources, and more.

You can review the available documentation and resources in the Xamarin Developer
Center at http://developer.xamarin.com.

Xamarin on edX

Microsoft also offers courses on the edX online training platform to provide self-paced
developer-related courses for subjects including Microsoft Azure, Microsoft Exchange
Server, and Xamarin. Currently available courses include a two-week introduction
course to Xamarin.Forms, and a six-week Programming with C# course that includes
useful information for new application developers. To locate the Xamarin.Forms course,
search for Xamarin on http://www.edx.org.

Microsoft Virtual Academy

The Microsoft Virtual Academy (MVA), provides free video-based training for a variety
of Microsoft and fundamental technologies. Several beginning, intermediate, and
advanced Xamarin courses are available, including Xamarin for Absolute Beginners,
designed for experienced .NET developers who want to use Xamarin. You can find
the MVA at http://mva.microsoft.com.

Third-party resources

Many websites, including those described here, provide learning materials related
to Xamarin.

• Pluralsight is a subscription-based learning portal that
offers courses for a wide range of technologies. As of
this writing, Pluralsight offers over 125 Xamarin-related

http://developer.xamarin.com
http://www.edx.org
http://mva.microsoft.com

4 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

courses, ranging in length from 45 minutes to eight hours.
Pluralsight is located at http://www.pluralsight.com.

• Lynda.com offers subscription-based learning that
includes Xamarin-related resources. You can learn more at
http://www.lynda.com.

• Tuts+ is a free online resource that provides how-to
tutorials for various technologies. Several Xamarin-related
tutorials are available. You can learn more at http://www.
tutsplus.com.

http://www.pluralsight.com
http://www.lynda.com
http://www.tutsplus.com
http://www.tutsplus.com

5Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#2
TIP

Using GitHub resources

XAMARIN AND INFRAGISTICS PROVIDE a vast amount of resources through
their respective GitHub sites. Many open license projects are available on GitHub and
can be used immediately in your next app. If the foundation for a module is available
on GitHub, it isn’t necessary for you to create it from scratch.

Xamarin GitHub repositories

The Xamarin GitHub has dozens of repositories for samples, components, workbooks,
and more. The most popular Xamarin repositories include:

• Xamarin.Forms
• Xamarin.MaciOS
• Xamarin.Android

Each of these repositories has several available branches and builds. Each build
includes a readme file that contains the build requirements and configuration steps
for using the build. For example, the build requirements for a recent version of Xamarin.
MaciOS include:

• Autoconf, automake, and libtool
• CMake
• Xcode
• Mono SDK
• Xamarin Studio

The readme file describes how to install the dependencies that are required to use the
module. The primary Xamarin repositories can be found at https://github.com/xamarin.

Reporting a bug

Xamarin handles bug reporting through an instance of Bugzilla that is available at
https://bugzilla.xamarin.com/newbug. If you encounter a problem with any of the

https://github.com/xamarin
https://bugzilla.xamarin.com/newbug

6 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

modules in the Xamarin repositories, provide the following information in the bug
report:

• The steps to reproduce the bug.
• The expected behavior or result.
• The actual behavior or result.
• Any available supporting information, such as log files,

images, or videos.
• The development or testing environment in which the

bug occurs.

Samples

Another GitHub repository and resource for developing apps is Mono for Android
and MonoTouch for iOS. Both iterations of Mono provide sample projects and use
the native API for each platform to provide rich features and capabilities for the given
platform. A typical sample project is the tip calculator shown in Figure 3, which was
recently updated for Xamarin.Forms. This sample is available at https://developer.
xamarin.com/samples/xamarin-forms/TipCalc.

Figure 3: Tip calculator sample.

https://developer.xamarin.com/samples/xamarin-forms/TipCalc/
https://developer.xamarin.com/samples/xamarin-forms/TipCalc/

7

#2: TIP —Using GitHub resources

As previously mentioned, the Xamarin Developer Center provides samples for multiple
platforms. Samples can be organized by platform, including:

• Cloud
• Data
• Games
• Operating system version
• Navigation
• Notifications
• Physics

You can download a compressed folder of these samples that contain the solution
files, or you can browse the code for each sample on GitHub.

Infragistics GitHub repositories

Infragistics also maintains GitHub repositories for Ignite UI, the ReportPlus component,
and other components. The Infragistics repositories are available from https://github.
com/Infragistics. The IgniteUI repositories are available from https://github.com/IgniteUI.

MONO

Mono is the underlying foundation that enables cross-platform development using
Xamarin. Mono uses an open source version of .NET and is licensed under the MIT
license. The Xamarin SDKs for iOS and Android and the source code for these projects
have been contributed to the .NET Foundation.

DOCKER

Docker enables the use of containers and images to run applications in a continuous
integration/continuous deployment model. Docker is open source, and is available for
the Windows Server 2016, Linux, and Mac OS X platforms. You can configure applica-
tions to run on specific versions of an operating system that is used as the container.
For example, you can combine Mono and Docker to create containerized versions of
applications that run without any additional operating system configuration.

https://github.com/Infragistics
https://github.com/Infragistics
https://github.com/IgniteUI

8 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#3
TRAP
Deploying and testing with
emulators

CHANCES ARE THAT YOU don’t have dozens of mobile devices running all the
versions of the mobile operating systems you want to deploy and test your mobile
app on. You can avoid the expense and trouble of maintaining a full array of test
devices by using virtual emulators such as the one shown in Figure 4. However, this
does introduce another layer of complexity.

Figure 4: An Android emulator on Hyper-V.

Visual Studio uses the Client Hyper-V functionality that was introduced with Windows 8.
This is the same enterprise virtualization technology capability that is available in
the Windows Server OS, but at the client level. Instead of needing dozens of devices
that run different OS versions, you can use virtual machines (VMs) that emulate each

9

#3: TRAP —Deploying and testing with emulators

Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

version of the software. Visual Studio will communicate with the VMs and automatically
deploy your app on the VM when testing. The Android emulators through Visual
Studio are typically must faster than the emulators provided by Google.

If you are running Visual Studio in a VM already, then you must configure additional
virtualization extensions to run Hyper-V nested within a VM. Nested virtualization is
only supported on Windows Server 2016 and Windows 10 Anniversary Update. For
more information, visit https://docs.microsoft.com/en-us/virtualization/hyper-v-on-
windows/user-guide/nested-virtualization.

Four Hyper-V components that you need to be aware of when testing mobile apps
on VMs are:

• Dynamic memory
• File storage locations
• Virtual switches
• Code change deployment

Dynamic memory

To effectively test your apps on VMs, your development machine must have the same
storage and memory specifications that the mobile device will have. Most mobile
devices have only a small amount of RAM and storage, so one mobile OS or app
doesn’t require significant resources. However, if you plan to test several devices or
OS versions, you might need more RAM than is available off the shelf. Figure 5 shows
the memory settings of the emulator VM.

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/nested-virtualization
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/nested-virtualization

10 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Figure 5: Memory settings of the Windows Phone OS emulator.

Hyper-V VMs for all operating systems have dynamic memory that expands when
the VM requests it, from a minimum amount to a maximum that you specify. In the
example shown in Figure 6, the emulator will start with 512 MB of RAM. If you are
testing only the functionality of your app, you can enable dynamic memory to provide
the emulator with as much RAM as it requests. However, this can provide you with
some false hope as you test your application, because you might not be aware of
it when the emulator exceeds the RAM that would typically be found on a mobile
device. You should disable dynamic memory, and set a hard limit on the maximum
amount of RAM the emulator can use to more accurately test how an actual mobile
device will respond.

File storage locations

All Hyper-V VM images and files are stored in the user directory, which typically resides
on the local OS drive. Therefore, if you are running Visual Studio on a laptop or other
computer that has only one drive, you might see slower storage performance than
the actual mobile device would have. Figure 6 shows the storage settings for an
Android-based emulator running KitKat.

11

#3: TRAP —Deploying and testing with emulators

Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Figure 6: An Android emulator stored on the OS drive.

To more accurately emulate the dedicated storage space of a mobile device, run your
emulators on a separate data drive.

Virtual network switches

Hyper-V uses virtual switches to bridge the network connection of a VM or emulator
with the actual network adapter, whether physical or wireless, of the host computer.
Figure 7 shows the Hyper-V Virtual Switch Manager for a host computer that has five
switches configured.

12 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Figure 7: The Virtual Switch Manager for Hyper-V.

Hyper-V uses three virtual switch connection types :

• External connections create a bridge from the VM to the
adapter on the host.

• Internal connections provide a separate network, similar
to a virtual LAN (VLAN), that enables communication
between the host and VMs but does not provide Internet
access.

Private connections provide a segmented network for internal VM ca communications
without access to the host or the Internet.

In most cases, you would want to use an external switch for your emulators or VMs so
that they have the same network access as the host computer. If you have multiple
network adapters, you can assign a dedicated connection for the VMs from the drop-
down list. If you have only one network adapter, the Allow management operating
system to share this network adapter check box must remain selected to allow the
host OS to share the adapter. Otherwise, Hyper-V will completely control the adapter
and the host OS will lose network connectivity.

13

#3: TRAP —Deploying and testing with emulators

Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Code change deployment

When using emulators to test an app, Xamarin and Visual Studio can sometimes try
to be overly helpful. Small changes to your app code might not always be deployed
to the emulator. If you think that code changes haven’t been deployed, delete the
app from within the emulator, clean the solution in Visual Studio, and then retry the
deployment. Cleaning the solution should include deleting the bin and object folders.
This will ensure that the latest build is pushed to the emulator. It is also important
to note that emulators can perform very differently from actual hardware devices.
Before you release an app, you should test the app on as many physical devices that
you realistically can.

You can find a walkthrough of setting up Visual Studio for use with Xamarin at https://
msdn.microsoft.com/en-us/library/dn879698.aspx, and the steps for verifying that your
environment is ready for mobile app development at https://msdn.microsoft.com/
en-us/library/mt488769.aspx.

https://msdn.microsoft.com/en-us/library/dn879698.aspx
https://msdn.microsoft.com/en-us/library/dn879698.aspx
https://msdn.microsoft.com/en-us/library/mt488769.aspx
https://msdn.microsoft.com/en-us/library/mt488769.aspx

14 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#4
TIP
Using NuGet

IF YOU HAVE ANY previous experience with .NET, you are probably familiar with
using NuGet. NuGet is the package manager for developing .NET applications. Packages
can be integrated into an app by using NuGet. Xamarin offers several packages that
can be combined with existing .NET packages to enable cross-platform development.
To navigate to the NuGet package manager in Visual Studio, right-click a solution, and
then click Manage NuGet Packages for Solution, as shown in Figure 8.

Figure 8: Managing NuGet packages from within Visual Studio.

Adding a package to a solution places it in the References tree of the solution. After a
package is added to a solution, you can use the APIs while developing your app. Even
a simple cross-platform application can have several packages integrated with it. For
example, the solution for the WeatherApp tutorial on MSDN includes over a dozen
NuGet packages. (The WeatherApp tutorial is available at https://msdn.microsoft.com/
en-us/library/dn879698.aspx.)

https://msdn.microsoft.com/en-us/library/dn879698.aspx
https://msdn.microsoft.com/en-us/library/dn879698.aspx

15

#4: TIP —Using NuGet

The NuGet package manager, shown in Figure 9, makes it easy to install packages
from within Visual Studio and update the packages you have integrated.

Figure 9: NuGet packages integrated with a sample app.

The Updates tab of the package manager lists the packages that have available
updates. To obtaining an update, simply select its checkbox and then click Update.

By default, the NuGet package manager displays only the packages that are available
from NuGet.org. If you plan to create or use a custom or licensed package, you can
add another package source to the package manager from the Options dialog box
shown in Figure 10. To open the Options dialog box, click the gear icon within the
package manager. In the Options dialog box, click the Add button (the plus sign) to
define a new source, and then configure the name and URL or disk location of the
source. After adding the source, you can add packages from the source by selecting
it from the drop-down menu in the package manager.

16 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Figure 10: Adding a package source.

A common scenario is to use NuGet packages without committing the packages that
you are using into source control. You can configure Visual Studio to automatically
restore packages from the package source server so that the package binaries are
not included in source control. You configure this setting on the General tab of the
Options dialog box, as shown in Figure 11.

Figure 11: Configuring general package options.

For more-advanced solutions, you can create a custom .nuspec file that defines the
framework names. The .nuspec file content would be similar to the following code
segment:

17

#4: TIP —Using NuGet

<files>
 <file src=”Mac\bin\Release*.dll” target=”lib\Xamarin.
Mac20” />
 <file src=”iOS\bin\Release*.dll” target=”lib\Xamarin.
iOS10” />
 <file src=”Android\bin\Release*.dll” target=”lib\Mono-
Android10” />
 <file src=”iOSClassic\bin\Release*.dll” target=”lib\
MonoTouch10” />
</files>

You can specify package versions in the .nuspec file. This would be necessary if the
solution targets a certain minimum version that must be used. For example, in the
target fields of preceding code segment, Xamarin.Mac20 specifies version 2.0 and
Xamarin.iOS10 specifies version 1.0.

18 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#5
TIP
Implementing grid layouts with
Xamarin

RECENT MOBILE CONTENT USES square layouts to modernize the user interface.
Xamarin has a built-in layout named Grid that arranges content into rows and columns.
The Grid layout is useful if you want to arrange buttons or content into rows and
columns. Some examples include the numbers in a calculator app, the iOS and Android
home screens, or toolbars that have data in equally-sized squares.

The Grid layout is unlike a table in that the content does not determine the number
of cells; instead, you specify the number of rows and columns.

The Grid layout includes the following components:

• Rows and columns
• Data placement
• Cell spacing
• Cell spanning

Rows and columns

The data that defines the number of rows and columns of a Grid layout is stored in
the RowDefinitions and ColumnDefinitions collections. Each collection has only one
property to configure: rows are defined by the Height property, and columns are
defined by the Width property. The Height and Width values can be defined in one
of three ways:

• Auto automatically fits the column or row to its content.
• Proportional (defined by an asterisk) sizes the column or

row to fill the available space.
• Absolute defines a specific value for the column height or

row width.

19

#5: TIP —Implementing grid layouts with Xamarin

For example, imagine that you need to define two rows and two columns of data as
follows:

• The first row should be 100 pixels high.
• The second row should fill the remaining vertical space.
• The first column should adjust automatically to the width

of its content.
• The second column should fill the remaining horizontal

space.

The XAML code for the layout would be as follows:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”100” />
 <RowDefinition Height=”*” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”*” />
 </Grid.ColumnDefinitions>
</Grid>

By default, Microsoft platforms automatically use proportional widths when using
XAML. However, with Xamarin.Forms, the default column width is set to Auto if it is
not defined in XAML.

Data placement

After you define the layout of a Grid, you can add children and specify the cell that
you want to display the content in. The specific position of the data is defined in the
Grid.Row and Grid.Column attached properties for an object. When defining the
values for the properties, each row and column starts at zero, so the top left cell of
the Grid layout has the position 0,0. Building on the previous example, the following
XAML code segment adds label objects at each Grid location:

 <Label Text=”Top Left” Grid.Row=”0” Grid.Column=”0” />
 <Label Text=”Top Right” Grid.Row=”0” Grid.Column=”1” />
 <Label Text=”Bottom Left” Grid.Row=”1” Grid.Column=”0” />
 <Label Text=”Bottom Right” Grid.Row=”1” Grid.Column=”1” />

20 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Cell spacing

You define the cell spacing of a Grid layout by defining the spacing between columns
and between rows in the initial Grid object, as shown in the following XAML code
segment:

<Grid ColumnSpacing=”10” RowSpacing=”10”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*” />
 </Grid.ColumnDefinitions>
</Grid>

Cell spanning

It’s common to have labels or buttons that span multiple columns or rows in a grid.
For example, the zero button of a calculator or numeric keypad typically spans two
columns at the bottom of the interface. The ColumnSpan property of the Grid layout
specifies the number of columns the object will span, and the RowSpan property
defines the number of rows the object will span. When using XAML, you define the
ColumnSpan or RowSpan property with the object, as shown in the following code
segment:

 <Label Text=”Bottom Right” Grid.Row=”1” Grid.Column=”0”
Grid.ColumnSpan=”2”/>

21Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#6
TIP

Optimizing data rendering across
platforms

THERE ARE A FEW different ways of rendering and using data across multiple
platforms. Some of these options include:

• AppCompat for Android
• TableView
• WebView
• ListView

AppCompat for Android

AppCompat for Android provides new themes that can be used with Material Design
on the Android 6.0 (Marshmallow) framework. Material Design requires the creation
of several XML files that define the color and theme to use on the device. These files
include:

• Resources/values/colors.xml
• Resources/values/style.xml
• Resources/values-v21/style.xml (For Lollipop and newer

frameworks)
• Properties/AndroidManifest.xml
• Resources/layout/tabs.axml
• Resources/layout/toolbar.axml

Google provides a color palette generator at http://www.materialpalette.com for color
schemes that can be used with Material Design.

In existing Xamarin.Forms apps, the MainActivity.cs class inherits the data from
FormsApplicationActivity, which must be replaced with FormsAppCompatActivity to
enable the latest functionality.

http://www.materialpalette.com/

22 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

TableView

TableView is a common data rendering method when a list of information is provided.
Samples include the list of settings that are found for a device, collecting data that
is being input into a form, or displaying data row by row. The TableView component
has an equivalent view on each platform’s API, so that data can be rendered natively.

TableView has two default properties:

• SwitchCell is a Boolean switch for on/off or true/false
settings.

• EntryCell is a field for capturing user input.

The following XAML code segment provides an example of using a SwitchCell toggle
to enable notifications when a receiving a new message:

<TableView Intent=”Settings”>
 <TableRoot>
 <TableSection Title=”Notification”>
 <SwitchCell Text=”New Message” />
 <SwitchCell Text=”New Message” On=”true” />
 </TableSection>
 </TableRoot>
</TableView>

The EntryCell property is used when capturing user data, and can also define options
such as the type of keyboard to use (whether the full alphabetical, or the number
keys for a phone number) and the text label, color, and alignment.

WebView

As the name suggests, WebView displays web content including CSS, HTML, documents,
and local files by downloading it and then rendering it within the application. (This
differs from OpenUri, which opens the native web browser on the device.) Note that
with documents, the native components are used to render the data. So for iOS and
Android, you could display a PDF file because it can be rendered natively. However,
Windows Phone does not natively render PDF files, so they can’t be opened through
WebView.

When defining a WebView, the URL string must also include the appropriate web
protocol to use—either HTTP or HTTPS. When using local HTML files, you must define
the CSS for each platform that you intend to support. You must also configure the
BaseUrl property if you plan to link from one local HTML file to another. Otherwise,
WebView will not know where the file is located.

23

#6: TIP —Optimizing data rendering across platforms

ListView

The most commonly used view layout is ListView, which also has the most complex-
ity and the most customization options. ListView is available in Xamarin.Forms. It
communicates with the native rendering function through the platform’s API. This is
accomplished by following these steps:

Create a Xamarin.Forms custom control.

Consume the custom control from Xamarin.Forms.

Create the custom render control for each platform.

The actual steps and code vary depending on the platforms that you are rendering
for. A walkthrough that includes code samples of customizing the rendering for each
platform can be found in the Xamarin Developer Center at https://developer.xamarin.
com/guides/xamarin-forms/application-fundamentals/custom-renderer/listview.

When a list contains a large amount of data, it can suffer from slow scrolling perfor-
mance or a lag in configuring or entering data. You can improve the performance of
ListView across platforms by using a caching strategy.

The RetainElement and RecycleElement properties can be used with ListView to
define initialization and cell recycling when scrolling. For a walkthrough of configuring
these properties, including code samples, visit https://developer.xamarin.com/guides/
xamarin-forms/user-interface/listview/performance.

Android optimizations

With Android as the mobile OS, you can create an Adapter that uses the GetView
method. To optimize the view, you can use the convertView parameter for the method.
The convertView parameter attempts to reuse an old view. You should verify that the
view is non-null and an appropriate type. If the view cannot be converted, then a new
view will be created. This inherently increases the performance of the view.

A common performance hit happens because of using FindViewById with GetView.
You can create a different design pattern by creating a new class to store the controls.
If you inherit the property from Java.Lang.Object, each view will contain a Tag property
that can store data. However, the Tag property belongs to Java.Lang.Object so it must
be inherited from that. By calling the ViewHolder that is populated with data will result
in better performance than using the native FindViewById property.

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/custom-renderer/listview/
https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/custom-renderer/listview/
https://developer.xamarin.com/guides/xamarin-forms/user-interface/listview/performance/
https://developer.xamarin.com/guides/xamarin-forms/user-interface/listview/performance/

24 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#7
TIP
Boosting cross-platform
performance in Xamarin

MOBILE APP PERFORMANCE CAN be measured in a few different ways, whether
it’s the perceived performance by the user, the interface response time, or the battery
management. There are a few Xamarin techniques that you can use to boost the
overall performance of your mobile app, including the following:

• Use the Xamarin Profiler
• Release disposable resources
• Unsubscribe from events
• Use weak references
• Delay object initialization
• Use asynchronous APIs
• Manage garbage collection
• Minimize application size
• Compile XAML

Xamarin University has a free video that discusses how to avoid common pitfalls
with Xamarin Apps. The video, slides, and resources are available at https://university.
xamarin.com/guestlectures/avoiding-common-pitfalls-in-xamarin-apps.

Use the Xamarin Profiler

The Xamarin Profiler is a GUI for the Mono log provider. It identifies code that can
be optimized to boost performance, by tracking usage statistics such as memory
usage and method run time while the application is running. The Xamarin Profiler
is available as a separate download for both macOS and Windows. A Visual Studio
Enterprise license is required to enable profiling.

You can enable profiling in the Debugging section of a build. When building an iOS
application, the check box is labeled Profiling. When building an Android application,
the check box is labeled Developer instrumentation.

https://university.xamarin.com/guestlectures/avoiding-common-pitfalls-in-xamarin-apps
https://university.xamarin.com/guestlectures/avoiding-common-pitfalls-in-xamarin-apps

25

#7: TIP —Boosting cross-platform performance in Xamarin

When debugging an application, the profiler collects data about how objects are
being created, how garbage collection works, and the time spent processing methods
within the code. After you finished debugging the application, the profiler displays
the data and charts any identified methods or segments of an application that can
be optimized. Running the profiler against an emulator doesn’t always yield the best
results, especially if the XCode isn’t up to date. It is recommended that you use the
profiler on physical devices instead of emulators.

Release disposable resources

When a resource is no longer required, it is important to properly release it. This is
managed by the IDisposable interface, and can be performed by wrapping the object
in a using statement or in a try/finally block.

The IDisposable interface should be used only when a class owns an unmanaged
resource. Unmanaged resources are typically files, network connections, and streams.
You can also use the IDisposable interface when a class owns managed IDisposable
resources. However, Xamarin.Forms does not consistently call IDisposable.

One of the reasons that it is import to dispose of these resources is because they are
inherited from NSObject or Java.Lang.Object. This proactively tells the system that the
it can release the in-memory objects rather than waiting until the object is collected..

The API documentation for Xamarin includes examples of releasing unused resources,
and can be found at https://developer.xamarin.com/api/type/System.IDisposable.

Unsubscribe from events

Before a subscription object is disposed, events should be unsubscribed to prevent
memory leaks in the application. If an object is still referenced, the garbage collection
service will not dispose of the object from memory. The following code segment
provides an example of unsubscribing from an event:

public class Publisher
{
 public event EventHandler MyEvent;
 public void OnMyEventFires ()
 {
 if (MyEvent != null) {
 MyEvent (this, EventArgs.Empty);
 }
 }
}

https://developer.xamarin.com/api/type/System.IDisposable/

26 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

public class Subscriber : IDisposable
{
 readonly Publisher;
 public Subscriber (Publisher publish)
 {
 publisher = publish;
 publisher.MyEvent += OnMyEventFires;
 }
 void OnMyEventFires (object sender, EventArgs e)
 {
 Debug.WriteLine (“The subscriber has been notified of
an event”);
 }
 public void Dispose ()
 {
 publisher.MyEvent -= OnMyEventFires;
 }
}

Use weak references

When the garbage collection service runs, it examines the objects to determine what
can be removed from memory. If an object maintains a reference in the application,
then the garbage collection cannot dispose of the object. This object relationship
is referred to as a strong reference. Strong references are common in a parent-child
relationship.

A weak reference can be useful for objects that use a large amount of memory, but
can be easily re-created if they are removed by garbage collection. A weak reference
defines the relationship between two objects. A strong reference has the same rela-
tionship in both directions. A weak reference changes the relationship from the child
object to the parent.

Weak references are important for Xamarin because of how the iOS memory man-
agement system operates. The more native references cycles that exist for iOS apps,
the worse that they will perform. Reference cycles are perfectly acceptable within the
.NET code, but any objects inherited from NSObject will create memory leaks. Using
weak references enable you to minimize reference cycles.

You can learn more about weak references at https://msdn.microsoft.com/en-us/library/
ms404247(v=vs.110).aspx.

https://msdn.microsoft.com/en-us/library/ms404247(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms404247(v=vs.110).aspx

27

#7: TIP —Boosting cross-platform performance in Xamarin

Delay object initialization

A common occurrence of wasting processing power and battery life in mobile apps is
unnecessarily initializing objects. However, if you delay the initialization of an object
until it is actually needed, you can increase the overall performance of the app. If an
application might not use the defined object, or if other methods or processes must
complete before an object is needed, then wait to define the object until later in the
logic. This is referred to as lazy initialization, and is defined by the lazy constructor. You
can learn more about lazy initialization at https://msdn.microsoft.com/en-us/library/
dd997286(v=vs.110).aspx.

Use asynchronous APIs

Many APIs use synchronous processing, which can block threads from processing.
Asynchronous APIs never block thread execution for a significant amount of time.
When calling an API, ensure that you use asynchronous when available, especially for
user interface threads. Blocking UI threads will make the interface appear unresponsive
for the user.

Additionally, any operation that runs for a longer period should be processed as a
background thread. This limits the possibility of a UI thread being blocked because
of background processing.

Manage garbage collection

Xamarin uses two garbage collectors: SGen and Boehm. SGen is the default genera-
tional garbage collector in Xamarin. Boehm is a non-generational garbage collector,
and is the default collector only for Xamarin.iOS applications that use the Classic API.

SGen uses three heaps to manage space allocation:

• Nursery. Small objects are created until the nursery runs
out of space. Garbage collection moves live objects to the
major heap.

• Major heap. Long-running objects are stored in the
major heap until there is not enough memory. If garbage
collection does not free up enough space at this level, the
system will be asked for more memory.

• Large Object Space. Objects that require more than
8000 bytes are stored here. If the object is initialized at
that size, it will not begin in the nursery.

https://msdn.microsoft.com/en-us/library/dd997286(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd997286(v=vs.110).aspx

28 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

SGen pauses all threads in an application while performing garbage collection.
Therefore, it is important to avoid garbage collection in tight loops. You should also
release resources and unregister events as mentioned in previous sections.

Minimize application size

The compilation process differs depending on the platform. For example, iOS uses
ahead-of-time compilation to ARM assembly language. Android and Windows Phone
applications are compiled to Intermediate Language (IL). The .NET framework is
included with both compilations, and by default includes classes that are not being
used.

Xamarin includes a process to link classes to builds, but that process is disabled by
default. When the solution is being built, the types and methods will be analyzed to
determine if they are used for an application. If they are not, then they are removed
from the application. The option to enable the linker is in the build settings for a
project, as shown in Figure 12.

Figure 12: The Linker settings for an Android project.

29

#7: TIP —Boosting cross-platform performance in Xamarin

Compile XAML

XAML can also be compiled to .NET, or directly to IL with the XAML compiler. This
boosts the performance of an application by reducing load and instantiation time for
XAML objects. It also reduces the file size by eliminating .xaml files from the build. The
XAML compiler is disabled by default to ensure backward compatibility, but can be
enabled by defining the XamlCompilation attribute. You can detect errors in XAML
when compling that might not be otherwise caught with this attribute. The following
code segment provides an example of enabling the XAML compiler:

using Xamarin.Forms.Xaml;
...
[assembly: XamlCompilation (XamlCompilationOptions.Com-
pile)]
namespace SampleApp
{
...
}

30 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#8
TRAP
Using control and data templates

XAMARIN.FORMS OFFERS TWO TYPES of template for rendering data in a
theme: control templates and data templates. Control templates define the appear-
ance of control, including its background and text colors. Data templates define how
data is presented when using a control.

Control templates

Control templates separate the theme of a page (its colors and overall appearance)
from the page content. You can specify an overarching control template that defines
the theme without impacting the actual content that will be displayed on the page.

You can create a control template by using XAML if you replace the default App class
with a XAML App class. You create the control template as an object in ResourceDic-
tionary, and must call the MainPage and InitializeComponent methods to load and
parse the XAML. For example:

public partial class App : Application
{
 public App ()
 {
 InitializeComponent ();
 MainPage = new HomePage ();
 }
}

The ContentView.ControlTemplate property uses the StaticResource markup exten-
sion to assign templates. The ContentView.Content property defines how the content
is displayed in the layout on the page. The following example uses the TealTemplate
template with the Control Template:

31

#8: TRAP —Using control and data templates

Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

<ContentPage xmlns=”http://xamarin.com/schemas/2014/forms”
xmlns:x=”http://schemas.microsoft.com/winfx/2009/xaml”
x:Class=”SimpleTheme.HomePage”>
 <ContentView x:Name=”contentView” Padding=”0,20,0,0”
 ControlTemplate=”{StaticResource Teal-
Template}”>
 <StackLayout VerticalOptions=”CenterAndExpand”>
 <Label Text=”This demonstrates a template!”
HorizontalOptions=”Center” />
 <Button Text=”Change the theme!” Clicked=”On-
ButtonClicked” />
 </StackLayout>
 </ContentView>
</ContentPage>

The preceding code segment defines the display of a simple button in the TealTemplate
template. If the corresponding button contains the following code, it will cycle through
the available templates:

void OnButtonClicked (object sender, EventArgs e)
{
 originalTemplate = !originalTemplate;
 contentView.ControlTemplate = (originalTemplate) ? teal-
Template : aquaTemplate;
}

After clicking the button, the template colors would change from teal to aqua, without
changing the page content. You can set and define a Control Template by using a
style, or for an individual page.

Data templates

Data templates define data for supported controls. For example, imagine a ListView
control that displays a collection of names, birthdays, and postal codes.

public class Demographics
{
 public string Name { get; private set; }
 public int DoB { get; private set; }
 public string postCode { get; private set; }
 public Demographics (string name, int dob, string post-
code)

32 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

 {
 Name = name;
 Birthdate = dob;
 PostCode = postcode;
 }
}

You can then assign the actual data from the listView.ItemsSource property by using
the following code:

public partial class WithoutDataTemplatesPage : ContentPage
{
 public WithoutDataTemplatesPage ()
 {
 InitializeComponent ();
 var people = new List<Person> {
 new Person (“Jane”, 28/02/1970, “20552”)
 };
 listView.ItemsSource = people;
 }
}

You can modify the appearance of the data by using a Data Template. If you have
a collection of objects from a ListView control, you can define the property within
a Data Template. The template will bind the property values to the corresponding
elements, which will then be rendered appropriately.

<ListView x:Name=”listView”>
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Grid>
 ...
 <Label Text=”{Binding Name}” FontAttributes=”Bold”
/>
 <Label Grid.Column=”1” Text=”{Binding DoB}” />
 <Label Grid.Column=”2” Text=”{Binding postCode}”
... />
 </Grid>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

33Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#9
TIP

Using .NET Core

THROUGHOUT THE PREVIOUS TIPS, we’ve discussed a lot about the APIs that
are available for each platform, as well as the packages that you can integrate with
NuGet. It is important to understand when you should use .NET Core, a native API,
or a sourced package.

Use .NET when possible

Most issues that you will typically run into during development with Xamarin fall
somewhere between the .NET logic and using a native API. The more .NET that you can
use as part of the app, the better it will perform, and the easier it will be to troubleshoot.
Using .NET also maximizes the amount of code that you can share, and minimizes the
amount of platform-specific development that is needed for each platform.

For example, you shouldn’t develop logic that manipulates the NSDate class for iOS just
because you can. Instead, you should use the DateTime class in the .NET Framework,
and then convert it to NSDate only when communicating with that specific API. Any
time a .NET API exists, you should use it over a native API. The exception to this is
when you are trying to highlight or take advantage of a certain aspect of the native
API that the .NET framework might not be able to.

Understand XAML performance on different platforms

It’s also a common misconception that Xamarin.Forms is a silver bullet for developing
cross-platform apps. Of course, this isn’t exactly the case. Using Xamarin.Forms helps
solve some common problems of developing for individual platforms, but by the
same token it also introduces its own complexities.

An example of this is using XAML for Windows Presentation Foundation (WPF) and
Universal Windows Platform (UWP). The XAML that you develop for Android and
iOS might not behave the same on WPF or UWP. You can avoid a lot of headaches
by learning how XAML works differently on Windows devices compared to other
platforms.

34 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Share logic

Two common options for sharing logic are Shared Projects and Portable Class Libraries
(PCLs).

• Using a Shared Project is a simple method of sharing and
referencing code files. This enables you to reference plat-
form specific logic in classes without using dependency
interjection. However, this can also have the downside of
leading to poor logic decisions.

• PCLs enable sharing by building a library that is valid for
a certain set of .NET platforms. There are individual APIs
that you can use depending on the platform that you
are developing for. PCLs are very portable and can be
referenced from any platform that is a member of the PCL
profile. This ensure that the logic is performed accurately,
as it is defined as a dependency rather than woven in.
However, the more platform-specific dependencies that
are required by an app, the more complex and larger the
app becomes.

.NET Core assists in the development of cross-platform apps by providing an open
source and open module .NET platform. Using .NET Core gives you the ability to
deploy applications while supporting multiple versions of the framework..NET Core
is composed with NuGet packages, as discussed in a previous section. The packages
can either be compiled directly into the application, or included as files within the app.

.NET Core also includes a version of ASP.NET, named ASP.NET Core. This too is a smaller,
modular version of the framework for web developers. High performance web apps
can be deployed using ASP.NET Core to cloud or on-premises solutions. ASP.NET Core
can be run on both.NET Core and the full .NET Framework. When using .NET Core,
ASP.NET Core applications can be used across multiple platforms.

35Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#10
TIP

Releasing an Android app

THERE ARE MULTIPLE STEPS to preparing and publishing an application. When
publishing an Android application, these steps can include:

1. Prepare the app for release.
2. Sign the app package.
3. Publish the app to a store

• Google Play store
a. Use Google Licensing services.
b. Upload APK expansion files.

• Publish the app to the Amazon App Store.
• Publish the app independently.

Prepare the app for release

After you have developed and sufficiently tested an app and are ready to release it,
you should configure some attributes and settings, including the following:

• Application icon. Define an icon for the app (required by
the Google Play store).

• Application version. Initialize or update the app version
for both internal tracking and user notification.

• Shrink the APK. Use the profiler and link the Xamarin.
Android packages to reduce the size of the solution.

• Protect the application. Prevent reverse engineering by
disabling debugging, adding anti-debug or anti-tamper
code, and using native compilation.

• Compile. Compile the code and verify that it builds in
release mode.

36 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Sign the app package

To sign an APK, you first need to create a new security certificate. You can create a
certificate from Visual Studio from the app details when distributing the package.
When you click the green plus to add a signing key, you will be prompted to create
the Android key store with the required information. By default, the keystore will be
saved in the AppData folder of the local user account.

To assign the certificate with a package, select the signing identity while publishing
the application. You will be prompted to select the directory where to save the APK file.
The certificate will be saved with the package, and will be used to sign the package.

Publish the application to the Google Play store

Android offers several app markets that apps can be pushed to. The most popular,
and available on all Android devices, is the Google Play store. To publish apps to
the Google Play store, you must first obtain a developer account with Google. This
requires a one-time fee, which at the time of this writing is $25 USD. All applications
that are submitted to the Google Play store must have a signing key that expires after
October 22, 2033.

The maximum size for an APK in the Google Play store is 100 MB. If an application
exceeds 100 MB, additional app content can be delivered by using APK Expansion
Files. Each Android app can have up to two expansion files, with each file being up to 2
GB. The Google Play store hosts and distributes the files at no cost, regardless of size.

After creating a Google developer account, create and register for the Google API
access. You can use the API access to publish the application to the Google Play store.

Upload APK expansion files

As mentioned in the previous section, APK expansion files are necessary for files that
are larger than 100 MB. Each expansion file can be up to 2 GB in size, for a total of
just over 4 GB. On most Android devices, the expansion files are saved to removable
storage, and not to internal storage. There are two valid expansion types:

• Main expansion. This is for primary files that will not
simply fit within the APK size limit.

• Patch expansion. This is designed for updates or patches
to an application.

37

#10: TIP —Releasing an Android app

Using Google Licensing services

Google Licensing is a network-based service that enables you to determine whether
an application is licensed to run on a specific device. You can configure the Android
APK to check whether a license exists to use the app on a specific device, as well as
how often to check and how to handle various responses from the device.

Google Licensing uses an RSA key pair that is shared between the application and
the Google Play store. Developers for the Google Play store receive a public key that
is embedded within the Android application and used to authenticate the responses.

Google Licensing is a key component of APK expansion files, as the services obtain
the URLs that the additional data should be downloaded from. If an app is published
or obtained through a source other than the Google Play store, the Google Licensing
services are not used.

Publish the app to the Amazon Appstore

Amazon offers a competing app marketplace to the Google Play store, and has a
separate distribution program to go along with it. The Amazon Appstore does not
have a specific APK file size limit like the Google Play store does. However, APKs that
are larger than 30 MB use only FTP as a transfer method.

When you submit an app to the Amazon Appstore, you must define the following
package assets:

• App icon. A 114 px × 114 px .png file.
• App thumbnail. A 512 px × 512 px .png file, typically a

larger version of the icon.
• Screenshots. From three to ten screenshots that depict

the app user interface.
• Promotional image. If the app can be used in a promo-

tion, then a 1024 px × 500 px image must be provided for
promotional purposes.

• Videos. Up to five videos can be included with the app
that previews the app in the store.

After you submit an app, Amazon must approve the app before it is posted in the
Amazon Appstore. After approval, Amazon will send you a notice and make the APK
available for download.

38 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Publish the app independently

You can publish an application independently of a specific app marketplace. By default,
Android devices prevent users from installing applications from unknown third-party
sources. To install an independent app, the device must be configured to allow the
installation of apps from unknown sources. This setting is located in the Security
section of the device settings.

There are a few methods of distribution that can be used:

• Email. You can email the APK. When the APK is opened
on the device, an Install button will be displayed.

• Web. When a supported device downloads the APK from
a web browser, it will be automatically installed after the
download is complete.

• Manual installation. If you have a device attached to a
computer, you can install the APK directly to the device.

39Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

#11
BONUS TIP

Using the Prism framework

PRISM PROVIDES A METHOD of building XAML applications for the WPF, UWP,
and Xamarin.Forms. Each platform has an separate release that is built individually
on its own timeline. Prism enalbes you to implement a collection of design patterns
when developing XAML applications. These include MVVM, dependency injection,
commands, EventAggregator, and more by using a shared code base in a PCL for each
platform. Prism 6 is open source and can be downloaded from the GitHub repository
at https://github.com/PrismLibrary/Prism.

Key Concepts

Prism enhances capabilities and design patterns for composite application develop-
ment. Some of the key concepts that are defined in Prism include:

• Modules. Modules are packages that are used for specific
functionality. Modules can also wrap application infra-
structure or servers to be reused in multiple applications.

• Module catalog. For composite applications, the mod-
ules are discovered and loaded at run time. Prism uses a
catalog to specify the modules that are to be loaded, and
which order they must be loaded in.

• Shell. The modules are loaded into the shell. This defines
the layout and structure of the application, but is not
aware of the individual modules that are being used.

• Views. Views are UI controls for a feature of an application.
You can use a MVVM pattern in conjunction with a view

• View models. View models are the classes that wrap the
presentation logic and state. These define the properties,
events, and commands to control the view.

• Models. As part of the MVVM pattern, modules wrap any
data for validation and rules for consistency and integrity.

• Commands. Commands can be objects or methods in
a view model. Prism uses the DelegateCommand and
CompositeCommand classes.

https://github.com/PrismLibrary/Prism

40 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

• Regions. Regions updates an application’s UI without
requiring any changes to the underlying logic. The
ContentControl, ItemsControl, ListBox, and TabControl
controls can be used as a region.

• Navigation. Prism uses two methods of navigation:
state-based and view-switching. State-based navigation
uses an existing view that is updated. View-switching
navigation creates new views and replaces existing views.

• EventAggregator. Prism uses the EventAggregator
components to enable components to publish events
and other components to subscribe to events.

• Dependency injection container. Prism uses depen-
dency injection to manage dependences between
components. This enables dependencies to be added at
run time with Unity, MEF, or other dependency injection
container.

• Services. Services define non-UI related aspects of an
application. This can include logging, data access, and
exception management. Services can be registered with
a dependency injection container and used by other
components.

• Controllers. Controllers use presentation logic to display
information, including the Prism view-switching naviga-
tion.

• Bootstrapper. Bootstrapper is another component that
can be used by an application to initialize Prism compo-
nent’s and services.

A Developers Guide for the PWPF Prism Library is available on MSDN for version 5.
It offers a variety of information on using Prism, and can be found at https://msdn.
microsoft.com/en-us/library/gg406140.aspx.

https://msdn.microsoft.com/en-us/library/gg406140.aspx
https://msdn.microsoft.com/en-us/library/gg406140.aspx

41Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Summary

THAT WRAPS UP 10 of the most common tips, tricks, and traps that you will
typically encounter when developing cross-platform apps using Xamarin. Xamarin
(and Xamarin.Forms) is not a one-size-fits-all tool that magically makes mobile app
development a seamless and painless process. Xamarin addresses some issues that
have proven difficult in the past for developing cross-platform apps, but also intro-
duces its own complexities and requirements. If you become aware of these tips, tricks,
and traps before starting your first development project, you’ll be ahead of the curve
when you encounter your first issue.

Infragistics aims to make Xamarin and Xamarin.Forms easier to use and manage by
introducing the Moo2U component. This component addresses some of the pitfalls
discussed in this eBook by providing additional management options and GUI tools
for use during development. Visit http://www.infragistics.com for the latest updates
for Xamarin components.

http://www.infragistics.com

42 Try Ultimate UI for Xamarin for Free: bit.ly/UltimateXamarin

Charles Pluta is a technical consultant and Microsoft Certified Trainer
(MCT) who has authored several certification exams, lab guides, and
learner guides for various technology vendors. As a technical consul-
tant, Charles has assisted small, medium, and large organizations
deploy and maintain their IT infrastructure. He is also a speaker, staff
member, or trainer at several large industry conferences every year.
Charles has a degree in Computer Networking, and holds more than 15
industry certifications. He makes a point to leave the United States to
travel to a different country once every year. When not working on
training or traveling, he plays pool in Augusta, Georgia.

