
206
D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

1

ANGULAR ESSENTIALS
Angular is a widely used web application platform and framework

created and maintained by Google. It serves as a total rewrite to

AngularJS, and the "Angular" name is meant to include all versions of

the framework starting from 2 and up.

TypeScript is the core of Angular, being the language upon which

Angular is written. As such, Angular implements major and

core functionalities as TypeScript libraries while building client

applications with additional HTML.

For a variety of reasons, Angular has grown in popularity with

developers. It lends itself to maintenance ease with its component

and class-based system, modular building, hierarchical structure,

and simple, declarative templates. Furthermore, its cross-platform

capabilities are advantageous to enterprise and SMB developers,

including its speed with server-side rendering.

This Refcard will go over the essential pieces of Angular and the main

concepts behind working with the ever-growing platform for web-

based applications.

HOW IS ANGULAR DIFFERENT FROM
ANGULARJS?
In the past, you might have worked with or learned about AngularJS.

There are a few main differences between the two that you need to

know about:

• Modularity: More of Angular's core functionalities have

moved to modules.

• Hierarchy: Angular has an architecture built around a

hierarchy of components.

• Syntax: Angular has a different expression syntax for event

and property binding.

• Dynamic loading: Angular will load libraries into memory at

run-time, retrieve and execute functions, and then unload the

library from memory.

• Iterative callbacks: Using RxJS, Angular makes it easier to

compose asynchronous or callback-based code.

• Asynchronous template compilation: Angular, without

controllers and the concept of "scope," makes it easier to

pause template rendering and compile templates to generate

the defined code.

BROUGHT TO YOU IN PARTNERSHIP WITH

ORIGINAL BY GIL FINK, CEO AND SENIOR CONSULTANT, SPARXYS
WRITTEN BY DHANANJAY KUMAR, DEVELOPER EVANGELIST, INFRAGISTICS

CONTENTS

 ö ANGULAR ESSENTIALS

 ö HOW IS ANGULAR DIFFERENT FROM

ANGULARJS?

ö ANGULAR’S BASIC ARCHITECTURE

ö SETTING UP THE ENVIRONMENT

ö ANGULAR COMPONENTS

ö DATA BINDING IN ANGULAR

ö COMPONENT COMMUNICATION

ö DIRECTIVES

Angular
Essentials

https://quay.io/plans/
https://www.infragistics.com/downloads/request/00000000-0000-0000-0000-000000006309?utm_source=RefCard&utm_medium=Whitepaper&utm_campaign=Ignite-UI-Angular

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

3

ANGULAR ESSENTIALS

BROUGHT TO YOU IN PARTNERSHIP WITH

• TypeScript: Angular includes ES6 and its superset, TypeScript.

ANGULAR'S BASIC ARCHITECTURE
Here's a brief overview of the architecture involved and the building

blocks that I'll cover in this piece:

• NgModules: Declares a compilation context for a set of

components that is dedicated to an application domain, a

workflow, or a related set of capabilities.

• Components: Defines a class that contains application

data and logic and works with an HTML template that

defines a view.

• Template: Combines HTML with Angular markup that can

modify HTML elements before they're displayed.

• Directive: Attaches custom behavior to elements in the DOM.

• Two-way data binding: Coordinates the parts of a template

with the parts of a component.

• Services: Typically, a class used to increase modularity and

reusability with a narrow and well-defined purpose.

• Dependency injection: Provides components with needed

services and gives access to a service class.

• Routing: Defines a navigation path among the different

application states lets you view application hierarchies.

This diagram best represents the relationship between the

building blocks:

SETTING UP THE ENVIRONMENT
In order to set up the environment, you should start by downloading

Angular with the Angular CLI tool. If you have a machine that doesn't

have Node.js and npm installed, make sure to download and install

them here.

Then, you'll run a global install of the Angular CLI:

npm install --g \@angular/cli

NGMODULES

NgModules are excellent for organizing related items, and they

function to configure both the injector and compiler. You'll find that

that the NgModule is named as such, since it's a class that is marked

by the @NgModule decorator.

This decorator had the information on how to compile a component's

template and how to create an injector at runtime, all within a

metadata object. As you could guess, @NgModule serves to identify

and bridge the gap between both its own directives, components, and

pipes, and external components that rely on these pieces.

The exports property also makes some of the module's make-up

public, ensuring that the external components can effectively

use them.

As a last bit, @NgModule also adds services providers to the

application dependency injectors, foundationally making the

application more adaptable.

ANGULAR BOOTSTRAPPING

Understanding that an NgModule describes how an application's

parts are to work and fit together, it makes sense that every Angular

application has at least one Angular module. This core module

functions as the "root" module for the application, and the one that

you would bootstrap to launch the application.

There are three basic components to the root module, which we'll

discuss briefly.

DECLARATIONS ARRAY

Components used in an NgModule need to be added to the

declarations array as a way to tell Angular that these specific

components belong to this specific module. On top of this, since only

declarables can be added to the declarations array, you'll find that the

array will be populated with various components, directives, and pipes.

Keep in mind that declarables can only belong to one module.

IMPORTS ARRAY
The Imports array contains all dependent modules.

PROVIDERS ARRAY
The Providers array contains all Services dependencies.

ANGULAR COMPONENTS
In Angular applications, what you see in the browser (or elsewhere)

is a component. A component consists of the following parts:

1. A TypeScript class called the Component class

2. An HTML file called the template of the component

3. An optional CSS file for the styling of the component

http://dzone.com/refcardz
https://www.amazon.com/Executing-Data-Quality-Projects-Information/dp/0123743699

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

4

ANGULAR ESSENTIALS

BROUGHT TO YOU IN PARTNERSHIP WITH

A component is a type of directive with its own template. Whatever

you see in an Angular application is a component.

CREATING A COMPONENT
You can use an Angular CLI command to generate a component as

shown below:

ng generate component Product

This command will generate ProductComponent as shown below:

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-product',
 templateUrl: './product.component.html',
styleUrls: ['./product.component.scss']
})
export class ProductComponent implements OnInit {

 constructor() { }

 ngOnInit() {
 }

}

A component is a class decorated with the @Component decorator.

There are mainly four steps to create a component:

1. Create a class and export it. This class will contain data and

the logic.

2. Decorate the class with @component metadata. Metadata

describes the component and sets the value for different

properties.

3. Import the required libraries and modules to create the

component.

4. Create a template of the component and optionally style of

the component.

As you can see, the generated ProductComponent consists of:

• A class to hold data and the logic.

• HTML template and styles to display data in the app. It is also

called a view and is seen by the user on the screen to interact.

• Metadata that defines the behavior of a component.

Component metadata is applied to the class using the @

Component decorator. Different behavior of the component

can be passed as properties of the object, which is an input

parameter of the @Component decorator.

COMPONENT METADATA
The @Component decorator decorates a class as a component. It is

a function that takes an object as a parameter. In the @Component

decorator, we can set the values of different properties to set the

behavior of the component. The most used properties are as follows:

• template

• templateUrl

• Providers

• styles

• styleUrls

• selector

• encapsulation

• changeDetection

• animations

• viewProviders

Apart from the above-mentioned properties, there are also other

properties. Let's look into these important properties one by one.

TEMPLATE AND TEMPLATEURL

A template is the part of the component that gets rendered on the

page. We can create a template in two ways:

1. Inline template: template property

2. Template in an external file: templateUrl property

To create an inline template, the "tilt" is a symbol used to create

multiple lines in the template. A single-line inline template can be

created using either single quotes or double quotes. For the inline

template, set the value of template property. A complex template

can be created in an external HTML file and can be set using the

templateUrl property.

SELECTOR

A component can be used using the selector. In the above example,

the selector property is set to <app-product>. We can use the

component on the template of other components using its selector.

STYLES AND STYLEURLS

A component can have its own styles or it can refer to various other

external style sheets. To work with styles, @Component metadata has

styles and styleUrls properties. We can create inline styles by

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

5

ANGULAR ESSENTIALS

BROUGHT TO YOU IN PARTNERSHIP WITH

setting the value of the styles property. We can set external style

using styleUrls property.

PROVIDERS

To inject a service in a component, you pass that to the providers

array. Component metadata has an array type property called the

provider. In the providers, we pass a list of services being injected

in the component. We will cover this in detail in further sections.

CHANGEDETECTION

This property determines how the change detector will work for

the component. We set the ChangeDetectionStrategy of the

component in the property. There are two possible values:

1. Default

2. onPush

We will cover this property in detail in further sections.

ENCAPSULATION

This property determines whether Angular will create a shadow DOM

for a component. It determines the ViewEncapsulation mode of

the component. There are four possible values:

1. Emulated (this is the default)

2. Native

3. None

4. ShadowDom

TEMPLATE
When you generate a component using Angular CLI, by default,

selector, templateUrl, and styleUrl properties are set. For

ProductComponent, the template is in external HTML file product.

component.html.

<p>
 product works!
</p>

You can pass data and capture events between the component

class and its template using data binding. We will cover this in

detail in further sections.

USING A COMPONENT
A component can be used inside an Angular application in various ways:

1. As a root component.

2. As a child component. We can use a component inside

another Component.

3. Navigate to a component using routing. In this case, the

component will be loaded in RouterOutlet.

4. Dynamically loading component using

ComponentFactoryResolver.

The component must be part of a module. To use a component in a

module, first import it and then pass it to declaration array of the module.

@NgModule({
 declarations: [

AppComponent,
ProductComponent

],

DATA BINDING IN ANGULAR

In Angular, data binding determines how data will flow in between

the component class and component template.

Angular provides us three types of data bindings:

1. Interpolation

2. Property binding

3. Event binding

INTERPOLATION
Angular interpolation is one-way data binding. It is used to pass

data from the component class to the template. The syntax of

interpolation is {{propertyname}}.

Let's say that we have component class as shown below:

export class AppComponent {

 product = {
title: 'Cricket Bat',
price: 500

 };
 }

We need to pass the product from the component class to the

template. Keep in mind that to keep the example simple, we're hard-

coding the value of the product object; however, in a real scenario,

data could be fetched from the database using the API. We can

display the value of the product object using interpolation, as shown

in the listing below:

 <h1>Product</h1>
 <h2>Title : {{product.title}}</h2>
 <h2>Price : {{product.price}}</h2>

Using interpolation, data is passed from the component class to

the template. Ideally, whenever the value of the product object is

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

6

ANGULAR ESSENTIALS

BROUGHT TO YOU IN PARTNERSHIP WITH

changed, the template will be updated with the updated value of the

product object.

In Angular, there is something called the change detector service that

makes sure that the value of the property in the component class

and the template are in sync with each other.

Therefore, if you want to display data in Angular, you should use

interpolation data binding.

PROPERTY BINDING
Angular provides you with a second type of binding called property

binding. The syntax of property binding is the square bracket: []. It

allows for setting the property of HTML elements on a template with

the property from the component class.

So, let's say that you have a component class like the one below:

export class AppComponent {
btnHeight = 100;

 btnWidth = 100;
 }

Now, you can set the height and width properties of a button

on a template with the properties of the component class using

property binding.

<button
 [style.height.px] = 'btnHeight'
 [style.width.px] = 'btnWidth' >

Add Product
</button

Angular property binding is used to set the property of HTML

elements with the properties of the component class. You can also

set properties of other HTML elements like image, list, table, etc.

Whenever the property's value in the component class changes, the

HTML element property will be updated in the property binding.

EVENT BINDING
Angular provides you with a third type of binding to capture events

raised on templates in a component class. For instance, there's a

button on the component template that allows you to call a function

in the component class. You can do this using event binding. The

syntax behind event binding is (eventname).

For this example, you might have a component class like this:

export class AppComponent {
 addProduct() {

console.log('add product');
 }
}

You want to call the addProduct function on the click of a button on

the template. You can do this using event binding:

<h1>Product</h1>
<button (click)='addProduct()'>
 Add Product
</button>

Angular provides you these three bindings. In event binding,

data flows from template to class and in property binding and

interpolation, data flows from class to template.

 Angular does not have built-in two-way data binding; however, by

combining property binding and event binding, you can achieve two-

way data binding.

Angular provides us a directive, ngModel, to achieve two-way data

binding, and it's very easy to use. First, import FormsModule, and

then you can create two-way data binding:

export class AppComponent {

 name = 'foo';
 }

We can two-way data-bind the name property with an input box:

<input type="text" [(ngModel)]='name' />

<h2>{{name}}</h2>

As you see, we are using [(ngModel)] to create two-way data-

binding between input control and name property. Whenever a

user changes the value of the input box, the name property will be

updated and vice versa.

ANGULAR COMPONENT COMMUNICATION
In Angular, components communicate to each other to share data

such as object, string, number, array, or HTML.

To understand component communication, first, we need to

understand relationship between components. For example, when

two components are not related to each other, they communicate

through an Angular service.

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

7

ANGULAR ESSENTIALS

BROUGHT TO YOU IN PARTNERSHIP WITH

When you use a component inside another component, you create

a component hierarchy. The component being used inside another

component is known as the child component and the enclosing

component is known as the parent component. As shown in the

image below, in context of AppComponent, app-child is a child

component and AppComponent is a parent component.

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 template: `

 <h1>Hello {{message}}</h1>

 <app-child></app-child> //child component

 `,

})

export class AppComponent { //parent component

 message = 'I am Parent';

}

Parent and child components can communicate to each other in

following ways:

• @Input()

• @Output()

• Temp Ref Variable

• ViewChild

• ContentChild

When components are not related to each other, they communicate

using services. Otherwise, they communicate using one of the

various options depending on the communication criteria. Let's

explore all the options one by one.

@INPUT
You can pass data from a parent component to a child component

using the @Input decorator. Data could be of any form such as the

primitive type's string, number, object, array, etc.

To understand use of @Input, let's create a component:

import { Component } from '@angular/core';

@Component({
 selector: 'app-child',
 template: `<h2>Hi {{greetMessage}}</h2>`
})
export class AppChildComponent {

 greetMessage = 'I am Child';

}

Use the AppChild component inside AppComponent:

@Component({
 selector: 'app-root',
 template: `

 <h1>Hello {{message}}</h1>
 <app-child></app-child>
 `,
})
export class AppComponent {
 message = 'I am Parent';
}

AppComponent is using AppChildComponent, so AppComponent

is the parent component and AppChildComponent is the child

component. To pass data, the @Input decorator uses the child

component properties. To do this, we'll need to modify child

AppChildComponent as shown in the listing below:

import { Component, Input, OnInit } from '@angular/core';

@Component({
 selector: 'app-child',
 template: `<h2>Hi {{greetMessage}}</h2>`
})
export class AppChildComponent implements OnInit {
 @Input() greetMessage: string;

 constructor() {

 }

 ngOnInit() {

 }

}

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

8

ANGULAR ESSENTIALS

BROUGHT TO YOU IN PARTNERSHIP WITH

As you notice, we have modified the greetMessage property with

the @Input() decorator. So essentially, in the child component, we

have decorated the greetMessage property with the @Input()

decorator so that value of the greetMessage property can be

set from the parent component. Next, let's modify the parent

component AppComponent to pass data to the child component.

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 template: `

 <h1>Hello {{message}}</h1>

 <appchild [greetMessage]="childmessage"></appchild>

 `,

})

export class AppComponent {

 message = 'I am Parent';

 childmessage = 'I am passed from Parent to child

component';

}

From the parent component, we are setting the value of the child

component's property greetMessage. To pass a value to the child

component, we need to pass the child component property inside

a square bracket and set its value to any property of the parent

component. We are passing the value of the childmessage property

from the parent component to the greetMessage property of the

child component.

@OUTPUT
You can emit the event from the child component to the parent

component using the @Output decorator.

TEMP REF VARIABLE
Angular is based on a one-directional data flow and does not have

two-way data binding. So, we use @Output in a component to emit

an event to another component. Let's modify AppChildComponent

as shown in the listing below:

import { Component, Input, EventEmitter, Output } from '@

angular/core';

@Component({

 selector: 'app-child',

 template: `<button (click)="handleclick()">Click me<

button> `

})

export class AppChildComponent {

 handleclick() {

 console.log('hey I am clicked in child');

 }

}

There is a button in the AppChildComponent template calling the

function handleclick. Let's use the app-child component inside the

AppComponent as shown in the listing below:

import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'app-root',

 template: `<app-child></app-child>`

})

export class AppComponent implements OnInit {

 ngOnInit() {

 }

}

Here, we're using AppChildComponent inside AppComponent, thereby

creating a parent/child kind of relationship in which AppComponent

is the parent and AppChildComponent is the child. When we run the

application, we'll see this message in the browser console:

So far, it's very simple to use event binding to get the button to call

the function in the component. Now, let's tweak the requirement a

bit. What if you want to execute a function of AppComponent on the

click event of a button inside AppChildComponent?

To do this, you will have to emit the button-click event from

AppChildComponent. Import EventEmitter and output from @

angular/core.

Here, we are going to emit an event and pass a parameter to the

event. Modify AppChildComponent as shown in next code listing:

import { Component, EventEmitter, Output } from '@angular
core';
@Component({
 selector: 'app-child',
 template: `<button (click)="valueChanged()">Click me
<button> `

CODE CONTINUED ON NEXT COLUMN CODE CONTINUED ON NEXT PAGE

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

9

ANGULAR ESSENTIALS

BROUGHT TO YOU IN PARTNERSHIP WITH

})
export class AppChildComponent {
 @Output() valueChange = new EventEmitter();
 counter = 0;
 valueChanged() {

 this.counter = this.counter + 1;
 this.valueChange.emit(this.counter);

 }
}

We performed the following tasks in the AppChildComponent class:

• Created a variable called counter that will be passed as the

parameter of the emitted event.

• Created an EventEmitter valueChange that will be

emitted to the parent component.

• Created a function named valueChanged(). This function

is called on the click event of the button, and inside the

function, the event valueChange is emitted.

• While emitting the valueChange event, the value of the

counter is passed as a parameter.

In the parent component AppComponent, the child component

AppChildComponent can be used as shown in the listing below:

import { Component, OnInit } from '@angular/core';
@Component({
 selector: 'app-root',
 template: `<app-child
(valueChange)='displayCounter($event)'></app-child>`
})
export class AppComponent implements OnInit {
 ngOnInit() {
 }
 displayCounter(count) {
 console.log(count);
 }
}

Right now, we are performing the following tasks in the

AppComponent class:

• Using <app-child> in the template.

• In the <app-child> element, using event binding to use the

valueChange event.

• Calling the displayCounter function on the

valueChange event.

• In the displayCounter function, printing the value of the

counter passed from the AppChildComponent.

As you can see, the function of AppComponent is called upon the

click event of the button placed on the AppChildComponent. This

is can be done with @Output and EventEmitter. When you run

the application and click the button, you can see the value of the

counter in the browser console. Each time you click on the button,

the counter value is increased by 1.

DIRECTIVES
Directives create DOM elements and change their structure or

behavior in an Angular application. There are three types of

directives in Angular:

1. Components: Directives with templates.

2. Attribute directives: Change appearance and behavior of an

element, component, or other directive.

3. Structural directives: Change DOM layout by adding or

removing elements.

The basic difference between a component and a directive is that

a component has a template, whereas an attribute or structural

directive does not have a template. Angular has provided us

many inbuilt structural and attribute directives. Inbuilt structural

directives are *ngFor and *ngIf. Attribute directives are NgStyle

and NgModel.

USING STRUCTURAL DIRECTIVES
*ngIf is a structure directive used to provide an "if" condition to

the statements to get executed. If the expression evaluates to a

False value, the elements are removed from the DOM, whereas if it

evaluates to True, the element is added to the DOM.

Consider the below listing. In this, the *ngIf directive will add div in

DOM if the value of showMessage property is True.

@Component({
 selector: 'app-message',
 template:`
 <div *ngIf = 'showMessage'>
 Show Message
 </div>
 `
})

CODE CONTINUED ON NEXT PAGE

http://dzone.com/refcardz

Build Better Modern Web Experiences,
Faster with Angular Components

Ignite UI for Angular is the best Angular toolkit on the planet! A complete library of Angular-native UI components,
Material-based components, and 50+ high-performance charts and grids. All built to be enterprise-grade.

Download Now

Grids & Lists
Tree Grid
Hierarchical Grid
Data Grid
Spreadsheet
List View
Combo

Charts
Category Chart
Data Chart
Financial Chart
Pie Chart
Doughnut Chart
Sparkline

Gauges
Bullet Graph
Linear Gauge
Radial Gauge

Styling & Themes
Theming
Bootstrap
Components
Roundness
Shadows
Display Density

Data Entry & Display
Drop Down
Select NEW
Autocomplete
Buttons
Button Group
Checkbox
Switch
Radio Button
Label
Input
Badge
Icon

Mask Directive
Input Groups
Linear Progress
Circular Progress
Virtualization
Chip
Text Highlight

Data Visualizations
Tree Map
Zoom Slider

Interactions
Dialog Window
Slider
Ripple
Toggle
Overlay
Drag and Drop
Tooltip
Action Strip

Menus
Navigation Drawer
Navbar

Services
CSV Exporter
Excel Exporter
Transaction Service

Layouts
Layout Manager
Carousel
Bottom Navigation
Card
Avatar
Tabs
Expansion Panel
Splitter
Dock Manager

Notifications
Banner
Snackbar
Toast

Scheduling
Date Time Editor
Calendar
Date Picker
Date Range Picker
Month Picker
Time Picker

igniteui.com

Ignite UI for Angular includes:

https://www.infragistics.com/downloads/request/00000000-0000-0000-0000-000000006309
https://www.infragistics.com/products/ignite-ui-angular
https://www.infragistics.com/downloads/request/00000000-0000-0000-0000-000000006309?utm_source=RefCard&utm_medium=Whitepaper&utm_campaign=Ignite-UI-Angular
https://www.infragistics.com/products/ignite-ui-angular?utm_source=RefCard&utm_medium=Whitepaper&utm_campaign=Ignite-UI-Angular

N
Q
a:
,c(
u
II.
w
a:
'

:E
0
u

w
z

0
N
Q

�DZone

export class AppMessageComponent {

showMessage = true;

Keep in mind that *ngif does not hide or show a DOM element.

Rather, it adds or removes depending on the condition.

The *ngFor structure directive creates DOM elements in a loop.

Consider the below listing. In this, the *ngFor directive will add rows

in a table depending on number of items in the data array.

@Component({

})

selector: 'app-message',

template:'

<table>

<tr *ngFor='let f of data'>

<td>{{f,name}}</td>

</tr>

</table>

CODE CONTINUED ON NEXT COLUMN

IE]INFRAGISTIC5

export class AppMessageComponent {

data = [

{name : 'foo'},

{name : ' koo ' }

];

ANGULAR ESSENTIALS

In most cases, you won't have to create custom structural directives;

built-in directives should be enough.

lnfragistics provides the world's largest enterprises with tools and solutions to accelerate application design and development, and foster

team collaboration. More than two million developers worldwide use lnfragistics' enterprise-ready UX and UI toolkits to rapidly prototype

and build high-performing applications for the cloud, web, mobile and desktop. Ignite UI for Angular is lnfragistics' UI toolkit including

Angular-native0and Material-based components, and 60+ high-performance charts and grids.

Visit Ignite UI for Angular for a Free Trial or to learn more.

DZone communities deliver over 6 million pages each

month to more than 3.3 million software developers,

architects and decision makers. DZone offers something for

everyone, including news, tutorials, cheat sheets, research

guides, feature articles, source code and more. "DZone is a

developer's dream," says PC Magazine.

•

DZone, Inc.

150 Preston Executive Dr. Cary, NC 27513

888.678.0399 919.678.0300

Copyright© 2020 DZone, Inc. All rights reserved. No part of this publication

may be reproduced, stored in a retrieval system, or transmitted, in any form

or by means electronic, mechanical, photocopying, or otherwise, without

prior written permission of the publisher .

BROUGHT TO YOU IN PARTNERSHIP WITH IE] IN FRAGISTICS

https://www.infragistics.com/products/ignite-ui-angular?utm_source=RefCard&utm_medium=Whitepaper&utm_campaign=Ignite-UI-Angular

